Highly Stretchable and Compressible Carbon Nanofiber–Polymer Hydrogel Strain Sensor for Human Motion Detection
With the development of technology and the improvement of living standards, wearable electronic devices have attracted more attention. Here, both stretchable and compressible hydrogel strain sensors based on carbon nanofiber powder (CFP) and polyvinyl alcohol (PVA) are prepared by freezing–thawing c...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2020-03, Vol.305 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the development of technology and the improvement of living standards, wearable electronic devices have attracted more attention. Here, both stretchable and compressible hydrogel strain sensors based on carbon nanofiber powder (CFP) and polyvinyl alcohol (PVA) are prepared by freezing–thawing cycles. The PVA/CFP hydrogel exhibits excellent stretchable (366%) and compressible strains (70%). During 1000 loading–unloading cycles, the PVA/CFP hydrogel has a low plastic deformation ( |
---|---|
ISSN: | 1438-7492 1439-2054 |
DOI: | 10.1002/mame.201900813 |