Synthesis, Electrical Properties and Na+ Migration Pathways of Na2CuP1.5As0.5O7

A new member of sodium metal diphosphate-diarsenate, Na2CuP1.5As0.5O7, was synthesized as polycrystalline powder by a solid-state route. X-ray diffraction followed by Rietveld refinement show that the studied material, isostructural with β-Na2CuP2O7, crystallizes in the monoclinic system of the C2/c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2020-03, Vol.8 (3), p.305
Hauptverfasser: ALQarni, Ohud S. A., Marzouki, Riadh, Ben Smida, Youssef, Alghamdi, Majed M., Avdeev, Maxim, Belhadj Tahar, Radhouane, Zid, Mohamed Faouzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new member of sodium metal diphosphate-diarsenate, Na2CuP1.5As0.5O7, was synthesized as polycrystalline powder by a solid-state route. X-ray diffraction followed by Rietveld refinement show that the studied material, isostructural with β-Na2CuP2O7, crystallizes in the monoclinic system of the C2/c space group with the unit cell parameters a = 14.798(2) Å; b = 5.729(3) Å; c = 8.075(2) Å; β = 115.00(3)°. The structure of the studied material is formed by Cu2P4O15 groups connected via oxygen atoms that results in infinite chains, wavy saw-toothed along the [001] direction, with Na+ ions located in the inter-chain space. Thermal study using DSC analysis shows that the studied material is stable up to the melting point at 688 °C. The electrical investigation, using impedance spectroscopy in the 260–380 °C temperature range, shows that the Na2CuP1.5As0.5O7 compound is a fast-ion conductor with σ350 °C = 2.28 10−5 Scm−1 and Ea = 0.6 eV. Na+ ions pathways simulation using bond-valence site energy (BVSE) supports the fast three-dimensional mobility of the sodium cations in the inter-chain space.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr8030305