A Weighted Prékopa-Leindler inequality and sumsets with quasicubes

We give a short, self-contained proof of two key results from a paper of four of the authors. The first is a kind of weighted discrete Prékopa-Leindler inequality. This is then applied to show that if \(A, B \subseteq \mathbb{Z}^d\) are finite sets and \(U\) is a subset of a "quasicube" th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-03
Hauptverfasser: Green, Ben, Matolcsi, Dávid, Ruzsa, Imre, Shakan, George, Zhelezov, Dmitrii
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a short, self-contained proof of two key results from a paper of four of the authors. The first is a kind of weighted discrete Prékopa-Leindler inequality. This is then applied to show that if \(A, B \subseteq \mathbb{Z}^d\) are finite sets and \(U\) is a subset of a "quasicube" then \(|A + B + U| \geq |A|^{1/2} |B|^{1/2} |U|\). This result is a key ingredient in forthcoming work of the fifth author and P\"alv\"olgyi on the sum-product phenomenon.
ISSN:2331-8422