A Weighted Prékopa-Leindler inequality and sumsets with quasicubes
We give a short, self-contained proof of two key results from a paper of four of the authors. The first is a kind of weighted discrete Prékopa-Leindler inequality. This is then applied to show that if \(A, B \subseteq \mathbb{Z}^d\) are finite sets and \(U\) is a subset of a "quasicube" th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a short, self-contained proof of two key results from a paper of four of the authors. The first is a kind of weighted discrete Prékopa-Leindler inequality. This is then applied to show that if \(A, B \subseteq \mathbb{Z}^d\) are finite sets and \(U\) is a subset of a "quasicube" then \(|A + B + U| \geq |A|^{1/2} |B|^{1/2} |U|\). This result is a key ingredient in forthcoming work of the fifth author and P\"alv\"olgyi on the sum-product phenomenon. |
---|---|
ISSN: | 2331-8422 |