An Extensive Review of Multilevel Inverters Based on Their Multifaceted Structural Configuration, Triggering Methods and Applications

Power electronic converters are used to transform one form of energy to another. They are classified into four types depending upon the nature of the input and output voltages. The inverter is one among those types; it converts direct electrical current into alternating electrical current at desired...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-03, Vol.9 (3), p.433
Hauptverfasser: Sunddararaj, Suvetha Poyyamani, Srinivasarangan Rangarajan, Shriram, N, Subashini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Power electronic converters are used to transform one form of energy to another. They are classified into four types depending upon the nature of the input and output voltages. The inverter is one among those types; it converts direct electrical current into alternating electrical current at desired frequency. Conventional types of inverters are capable of producing voltage at the output terminal that can only switch between two levels. The range of output voltage generated at the output is low when they are used for high power applications. To improve the voltage profile and efficiency of the overall system, multilevel inverters (MLIs) are introduced. In multilevel inverters the voltage at the output terminal is generated from several DC voltage levels fed at its input. The generated output is more appropriate to a sine wave and the dv/dt rating is also less leading to the reduction in EMI. Though they possess many advantages compared to the conventional inverters, the structural complexity and triggering techniques involved in designing multilevel inverters are high. Many studies are being carried out in defining new topologies of MLI with reduced switch as well as with the implementation of different PWM techniques. This paper will provide an extensive review on variety of MLI configurations based on the parameters such as the number of switches, switching techniques, symmetric, asymmetric, hybrid topologies, configurations based on applications, THD and power quality.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9030433