Building blocks of amplified endomorphisms of normal projective varieties
Let X be a normal projective variety. A surjective endomorphism f : X → X is int-amplified if f ∗ L - L = H for some ample Cartier divisors L and H . This is a generalization of the so-called polarized endomorphism which requires that f ∗ H ∼ q H for some ample Cartier divisor H and q > 1 . We sh...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2020-04, Vol.294 (3-4), p.1727-1747 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a normal projective variety. A surjective endomorphism
f
:
X
→
X
is int-amplified if
f
∗
L
-
L
=
H
for some ample Cartier divisors
L
and
H
. This is a generalization of the so-called polarized endomorphism which requires that
f
∗
H
∼
q
H
for some ample Cartier divisor
H
and
q
>
1
. We show that this generalization keeps all nice properties of the polarized case in terms of the singularity, canonical divisor, and equivariant minimal model program. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-019-02316-7 |