Building blocks of amplified endomorphisms of normal projective varieties

Let X be a normal projective variety. A surjective endomorphism f : X → X is int-amplified if f ∗ L - L = H for some ample Cartier divisors L and H . This is a generalization of the so-called polarized endomorphism which requires that f ∗ H ∼ q H for some ample Cartier divisor H and q > 1 . We sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2020-04, Vol.294 (3-4), p.1727-1747
1. Verfasser: Meng, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a normal projective variety. A surjective endomorphism f : X → X is int-amplified if f ∗ L - L = H for some ample Cartier divisors L and H . This is a generalization of the so-called polarized endomorphism which requires that f ∗ H ∼ q H for some ample Cartier divisor H and q > 1 . We show that this generalization keeps all nice properties of the polarized case in terms of the singularity, canonical divisor, and equivariant minimal model program.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-019-02316-7