Modal dependent type theory and dependent right adjoints

In recent years, we have seen several new models of dependent type theory extended with some form of modal necessity operator, including nominal type theory, guarded and clocked type theory and spatial and cohesive type theory. In this paper, we study modal dependent type theory : dependent type the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2020-02, Vol.30 (2), p.118-138
Hauptverfasser: Birkedal, Lars, Clouston, Ranald, Mannaa, Bassel, Ejlers Møgelberg, Rasmus, Pitts, Andrew M., Spitters, Bas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, we have seen several new models of dependent type theory extended with some form of modal necessity operator, including nominal type theory, guarded and clocked type theory and spatial and cohesive type theory. In this paper, we study modal dependent type theory : dependent type theory with an operator satisfying (a dependent version of) the K axiom of modal logic. We investigate both semantics and syntax. For the semantics, we introduce categories with families with a dependent right adjoint (CwDRA) and show that the examples above can be presented as such. Indeed, we show that any category with finite limits and an adjunction of endofunctors give rise to a CwDRA via the local universe construction. For the syntax, we introduce a dependently typed extension of Fitch-style modal λ -calculus, show that it can be interpreted in any CwDRA, and build a term model. We extend the syntax and semantics with universes.
ISSN:0960-1295
1469-8072
DOI:10.1017/S0960129519000197