Estimation for varying coefficient panel data model with cross-sectional dependence
This paper describes a method for estimation and inference with a nonparametric varying coefficients panel data model that allows for cross-sectional dependence and heteroscedasticity, wherein the time series length T is larger than the cross-sectional size N . We first eliminate fixed effects by ta...
Gespeichert in:
Veröffentlicht in: | Metrika 2020-04, Vol.83 (3), p.377-410 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes a method for estimation and inference with a nonparametric varying coefficients panel data model that allows for cross-sectional dependence and heteroscedasticity, wherein the time series length
T
is larger than the cross-sectional size
N
. We first eliminate fixed effects by taking the cross-sectional average, and then use a local linear approach to obtain the initial estimator of the unknown coefficient functions. However, the initial estimator ignores the cross-sectional dependence and heteroscedasticity, which will lead to a loss of efficiency. Thus, we propose a weighted local linear method to obtain a more efficient estimator. In the theoretical part of the paper, we derive the asymptotic theory of the resulting estimator. Simulation results and a real data analysis are provided to illustrate the finite sample performance of the proposed method. |
---|---|
ISSN: | 0026-1335 1435-926X |
DOI: | 10.1007/s00184-019-00739-0 |