Estimation for varying coefficient panel data model with cross-sectional dependence

This paper describes a method for estimation and inference with a nonparametric varying coefficients panel data model that allows for cross-sectional dependence and heteroscedasticity, wherein the time series length T is larger than the cross-sectional size N . We first eliminate fixed effects by ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrika 2020-04, Vol.83 (3), p.377-410
Hauptverfasser: Liu, Hua, Pei, Youquan, Xu, Qunfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a method for estimation and inference with a nonparametric varying coefficients panel data model that allows for cross-sectional dependence and heteroscedasticity, wherein the time series length T is larger than the cross-sectional size N . We first eliminate fixed effects by taking the cross-sectional average, and then use a local linear approach to obtain the initial estimator of the unknown coefficient functions. However, the initial estimator ignores the cross-sectional dependence and heteroscedasticity, which will lead to a loss of efficiency. Thus, we propose a weighted local linear method to obtain a more efficient estimator. In the theoretical part of the paper, we derive the asymptotic theory of the resulting estimator. Simulation results and a real data analysis are provided to illustrate the finite sample performance of the proposed method.
ISSN:0026-1335
1435-926X
DOI:10.1007/s00184-019-00739-0