Improved generalized Atkin algorithm for computing square roots in finite fields
Recently, S. Müller developed a generalized Atkin algorithm for computing square roots, which requires two exponentiations in finite fields GF ( q ) when q ≡ 9 ( mod 16 ) . In this paper, we present a simple improvement to it and the improved algorithm requires only one exponentiation for half of sq...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2006-04, Vol.98 (1), p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, S. Müller developed a generalized Atkin algorithm for computing square roots, which requires two exponentiations in finite fields
GF
(
q
)
when
q
≡
9
(
mod
16
)
. In this paper, we present a simple improvement to it and the improved algorithm requires only one exponentiation for half of squares in finite fields
GF
(
q
)
when
q
≡
9
(
mod
16
)
. Furthermore, in finite fields
GF
(
p
m
)
, where
p
≡
9
(
mod
16
)
and
m is odd, we reduce the complexity of the algorithm from
O
(
m
3
log
3
p
)
to
O
(
m
2
log
2
p
(
log
m
+
log
p
)
)
using the Frobenius map and normal basis representation. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2005.11.015 |