Improved generalized Atkin algorithm for computing square roots in finite fields

Recently, S. Müller developed a generalized Atkin algorithm for computing square roots, which requires two exponentiations in finite fields GF ( q ) when q ≡ 9 ( mod 16 ) . In this paper, we present a simple improvement to it and the improved algorithm requires only one exponentiation for half of sq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2006-04, Vol.98 (1), p.1-5
Hauptverfasser: Kong, Fanyu, Cai, Zhun, Yu, Jia, Li, Daxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, S. Müller developed a generalized Atkin algorithm for computing square roots, which requires two exponentiations in finite fields GF ( q ) when q ≡ 9 ( mod 16 ) . In this paper, we present a simple improvement to it and the improved algorithm requires only one exponentiation for half of squares in finite fields GF ( q ) when q ≡ 9 ( mod 16 ) . Furthermore, in finite fields GF ( p m ) , where p ≡ 9 ( mod 16 ) and m is odd, we reduce the complexity of the algorithm from O ( m 3 log 3 p ) to O ( m 2 log 2 p ( log m + log p ) ) using the Frobenius map and normal basis representation.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2005.11.015