Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
This letter presents a formal stochastic convergence analysis of the standard particle swarm optimization (PSO) algorithm, which involves with randomness. By regarding each particle's position on each evolutionary step as a stochastic vector, the standard PSO algorithm determined by non-negativ...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2007-04, Vol.102 (1), p.8-16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter presents a formal stochastic convergence analysis of the standard particle swarm optimization (PSO) algorithm, which involves with randomness. By regarding each particle's position on each evolutionary step as a stochastic vector, the standard PSO algorithm determined by non-negative real parameter tuple
{
ω
,
c
1
,
c
2
}
is analyzed using stochastic process theory. The stochastic convergent condition of the particle swarm system and corresponding parameter selection guidelines are derived. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2006.10.005 |