A new probabilistic analysis of Karger's randomized algorithm for minimum cut problems

Recently Karger proposed a new randomized algorithm for finding a minimum cut of an n-vertex graph (weighted or unweighted) with probability Ω(n −2) . In this paper we present a new probabilistic analysis of Karger's randomized algorithm for a few classes of unweighted graphs. For random graphs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1997-12, Vol.64 (5), p.255-261
Hauptverfasser: Dai, Yang, Iwano, Kazuo, Katoh, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently Karger proposed a new randomized algorithm for finding a minimum cut of an n-vertex graph (weighted or unweighted) with probability Ω(n −2) . In this paper we present a new probabilistic analysis of Karger's randomized algorithm for a few classes of unweighted graphs. For random graphs whose edges are selected with a given probability p, (log n) n ⩽ p ⩽ 1 , we show that the expectation of success probability of the algorithm is Ω( p n ) . We also investigate a class of graphs with special structure that consists of two n- cliques and γ( n − 1) edges between the two cliques. Here γ is a parameter satisfying 0 < γ < 1 that makes these γ( n − 1) edges a unique minimum cut. We show that the algorithm finds the unique minimum cut with probability Ω( γ n γ ) .
ISSN:0020-0190
1872-6119
DOI:10.1016/S0020-0190(97)00175-0