Maximum weight triangulation and graph drawing

In this paper, we investigate the maximum weight triangulation of a convex polygon and its application to graph drawing. We can find the maximum weight triangulation of a special n-gon which inscribed on a circle in O(n 2) time. The complexity of this algorithm can be reduced to O(n) if the polygon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1999-04, Vol.70 (1), p.17-22
Hauptverfasser: Wang, Cao An, Chin, Francis Y., Yang, Bo Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 17
container_title Information processing letters
container_volume 70
creator Wang, Cao An
Chin, Francis Y.
Yang, Bo Ting
description In this paper, we investigate the maximum weight triangulation of a convex polygon and its application to graph drawing. We can find the maximum weight triangulation of a special n-gon which inscribed on a circle in O(n 2) time. The complexity of this algorithm can be reduced to O(n) if the polygon is regular. The algorithm also produces a triangulation approximating the maximum weight triangulation of a convex n-gon with weight ratio 0.5. We further show that a tree always admits a maximum weight drawing if the internal nodes of the tree connect to at most 2 non-leaf nodes, and the drawing can be done in O(n) time. Finally, we prove a property of maximum planar graphs which do not admit a maximum weight drawing on any convex point set.
doi_str_mv 10.1016/S0020-0190(99)00037-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237279914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002001909900037X</els_id><sourcerecordid>42197589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1c77c80c0fad63466024c888516ea53a7df8d7f3a607abcd777b311b412f635f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEYhIMoWKs_QVjEgx62vtnsJpuTSPELKh5U6C28zUeb0u7WZNfqv3fbih49zeWZGWYIOaUwoED51QtABilQCRdSXgIAE-l4j_RoKbKUUyr3Se8XOSRHMc47iOdM9MjgCT_9sl0ma-unsyZpgsdq2i6w8XWVYGWSacDVLDEB176aHpMDh4toT360T97ubl-HD-no-f5xeDNKNeOsSakWQpegwaHhLOccslyXZVlQbrFgKIwrjXAMOQicaCOEmDBKJznNHGeFY31ytstdhfq9tbFR87oNVVepMiYyISXNO6jYQTrUMQbr1Cr4JYYvRUFtnlHbZ9RmtpJSbZ9R4853_hOOUePCBay0j3_mEriUssOud5jthn54G1TU3lbaGh-sbpSp_T9F39Hbdjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237279914</pqid></control><display><type>article</type><title>Maximum weight triangulation and graph drawing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Cao An ; Chin, Francis Y. ; Yang, Bo Ting</creator><creatorcontrib>Wang, Cao An ; Chin, Francis Y. ; Yang, Bo Ting</creatorcontrib><description>In this paper, we investigate the maximum weight triangulation of a convex polygon and its application to graph drawing. We can find the maximum weight triangulation of a special n-gon which inscribed on a circle in O(n 2) time. The complexity of this algorithm can be reduced to O(n) if the polygon is regular. The algorithm also produces a triangulation approximating the maximum weight triangulation of a convex n-gon with weight ratio 0.5. We further show that a tree always admits a maximum weight drawing if the internal nodes of the tree connect to at most 2 non-leaf nodes, and the drawing can be done in O(n) time. Finally, we prove a property of maximum planar graphs which do not admit a maximum weight drawing on any convex point set.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(99)00037-X</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Approximation ; Computer science; control theory; systems ; Exact sciences and technology ; Geometry ; Graph drawing ; Graphs ; Information retrieval. Graph ; Maximum weight triangulation ; Studies ; Theoretical computing ; Weights &amp; measures</subject><ispartof>Information processing letters, 1999-04, Vol.70 (1), p.17-22</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Apr 16, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1c77c80c0fad63466024c888516ea53a7df8d7f3a607abcd777b311b412f635f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-0190(99)00037-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1806999$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Cao An</creatorcontrib><creatorcontrib>Chin, Francis Y.</creatorcontrib><creatorcontrib>Yang, Bo Ting</creatorcontrib><title>Maximum weight triangulation and graph drawing</title><title>Information processing letters</title><description>In this paper, we investigate the maximum weight triangulation of a convex polygon and its application to graph drawing. We can find the maximum weight triangulation of a special n-gon which inscribed on a circle in O(n 2) time. The complexity of this algorithm can be reduced to O(n) if the polygon is regular. The algorithm also produces a triangulation approximating the maximum weight triangulation of a convex n-gon with weight ratio 0.5. We further show that a tree always admits a maximum weight drawing if the internal nodes of the tree connect to at most 2 non-leaf nodes, and the drawing can be done in O(n) time. Finally, we prove a property of maximum planar graphs which do not admit a maximum weight drawing on any convex point set.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Graph drawing</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Maximum weight triangulation</subject><subject>Studies</subject><subject>Theoretical computing</subject><subject>Weights &amp; measures</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEYhIMoWKs_QVjEgx62vtnsJpuTSPELKh5U6C28zUeb0u7WZNfqv3fbih49zeWZGWYIOaUwoED51QtABilQCRdSXgIAE-l4j_RoKbKUUyr3Se8XOSRHMc47iOdM9MjgCT_9sl0ma-unsyZpgsdq2i6w8XWVYGWSacDVLDEB176aHpMDh4toT360T97ubl-HD-no-f5xeDNKNeOsSakWQpegwaHhLOccslyXZVlQbrFgKIwrjXAMOQicaCOEmDBKJznNHGeFY31ytstdhfq9tbFR87oNVVepMiYyISXNO6jYQTrUMQbr1Cr4JYYvRUFtnlHbZ9RmtpJSbZ9R4853_hOOUePCBay0j3_mEriUssOud5jthn54G1TU3lbaGh-sbpSp_T9F39Hbdjg</recordid><startdate>19990416</startdate><enddate>19990416</enddate><creator>Wang, Cao An</creator><creator>Chin, Francis Y.</creator><creator>Yang, Bo Ting</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990416</creationdate><title>Maximum weight triangulation and graph drawing</title><author>Wang, Cao An ; Chin, Francis Y. ; Yang, Bo Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1c77c80c0fad63466024c888516ea53a7df8d7f3a607abcd777b311b412f635f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Graph drawing</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Maximum weight triangulation</topic><topic>Studies</topic><topic>Theoretical computing</topic><topic>Weights &amp; measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cao An</creatorcontrib><creatorcontrib>Chin, Francis Y.</creatorcontrib><creatorcontrib>Yang, Bo Ting</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cao An</au><au>Chin, Francis Y.</au><au>Yang, Bo Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum weight triangulation and graph drawing</atitle><jtitle>Information processing letters</jtitle><date>1999-04-16</date><risdate>1999</risdate><volume>70</volume><issue>1</issue><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>In this paper, we investigate the maximum weight triangulation of a convex polygon and its application to graph drawing. We can find the maximum weight triangulation of a special n-gon which inscribed on a circle in O(n 2) time. The complexity of this algorithm can be reduced to O(n) if the polygon is regular. The algorithm also produces a triangulation approximating the maximum weight triangulation of a convex n-gon with weight ratio 0.5. We further show that a tree always admits a maximum weight drawing if the internal nodes of the tree connect to at most 2 non-leaf nodes, and the drawing can be done in O(n) time. Finally, we prove a property of maximum planar graphs which do not admit a maximum weight drawing on any convex point set.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(99)00037-X</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1999-04, Vol.70 (1), p.17-22
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237279914
source Access via ScienceDirect (Elsevier)
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation
Computer science
control theory
systems
Exact sciences and technology
Geometry
Graph drawing
Graphs
Information retrieval. Graph
Maximum weight triangulation
Studies
Theoretical computing
Weights & measures
title Maximum weight triangulation and graph drawing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20weight%20triangulation%20and%20graph%20drawing&rft.jtitle=Information%20processing%20letters&rft.au=Wang,%20Cao%20An&rft.date=1999-04-16&rft.volume=70&rft.issue=1&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(99)00037-X&rft_dat=%3Cproquest_cross%3E42197589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237279914&rft_id=info:pmid/&rft_els_id=S002001909900037X&rfr_iscdi=true