Maximum weight triangulation and graph drawing

In this paper, we investigate the maximum weight triangulation of a convex polygon and its application to graph drawing. We can find the maximum weight triangulation of a special n-gon which inscribed on a circle in O(n 2) time. The complexity of this algorithm can be reduced to O(n) if the polygon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1999-04, Vol.70 (1), p.17-22
Hauptverfasser: Wang, Cao An, Chin, Francis Y., Yang, Bo Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the maximum weight triangulation of a convex polygon and its application to graph drawing. We can find the maximum weight triangulation of a special n-gon which inscribed on a circle in O(n 2) time. The complexity of this algorithm can be reduced to O(n) if the polygon is regular. The algorithm also produces a triangulation approximating the maximum weight triangulation of a convex n-gon with weight ratio 0.5. We further show that a tree always admits a maximum weight drawing if the internal nodes of the tree connect to at most 2 non-leaf nodes, and the drawing can be done in O(n) time. Finally, we prove a property of maximum planar graphs which do not admit a maximum weight drawing on any convex point set.
ISSN:0020-0190
1872-6119
DOI:10.1016/S0020-0190(99)00037-X