A linear time deterministic algorithm to find a small subset that approximates the centroid
Given a set of points S in any dimension, we describe a deterministic algorithm for finding a T ⊂ S , | T | = O ( 1 / ε ) such that the centroid of T approximates the centroid of S within a factor 1 + ε for any fixed ε > 0 . We achieve this in linear time by an efficient derandomization of the al...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2007-12, Vol.105 (1), p.17-19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a set of points
S in any dimension, we describe a deterministic algorithm for finding a
T
⊂
S
,
|
T
|
=
O
(
1
/
ε
)
such that the centroid of
T approximates the centroid of
S within a factor
1
+
ε
for any fixed
ε
>
0
. We achieve this in linear time by an efficient derandomization of the algorithm in [M. Inaba, N. Katoh, H. Imai, Applications of weighted Voronoi diagrams and randomization to variance-based
k-clustering (extended abstract), in: Proceedings of the Tenth Annual Symposium on Computational Geometry, 1994, pp. 332–339]. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2007.07.008 |