A linear time deterministic algorithm to find a small subset that approximates the centroid

Given a set of points S in any dimension, we describe a deterministic algorithm for finding a T ⊂ S , | T | = O ( 1 / ε ) such that the centroid of T approximates the centroid of S within a factor 1 + ε for any fixed ε > 0 . We achieve this in linear time by an efficient derandomization of the al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2007-12, Vol.105 (1), p.17-19
Hauptverfasser: Worah, Pratik, Sen, Sandeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a set of points S in any dimension, we describe a deterministic algorithm for finding a T ⊂ S , | T | = O ( 1 / ε ) such that the centroid of T approximates the centroid of S within a factor 1 + ε for any fixed ε > 0 . We achieve this in linear time by an efficient derandomization of the algorithm in [M. Inaba, N. Katoh, H. Imai, Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering (extended abstract), in: Proceedings of the Tenth Annual Symposium on Computational Geometry, 1994, pp. 332–339].
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2007.07.008