A note on a theorem of Barrington, Straubing and Thérien
We show that the result of Barrington, Straubing and Thérien (1989) provides, as a direct corollary, an exponential lower bound for the size of depth-two MOD 6 circuits computing the AND function. This problem was solved, in a more general way, by Krause and Waack (1991). We point out that all known...
Gespeichert in:
Veröffentlicht in: | Information processing letters 1996-04, Vol.58 (1), p.31-33 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the result of Barrington, Straubing and Thérien (1989) provides, as a direct corollary, an exponential lower bound for the size of depth-two MOD
6 circuits computing the AND function. This problem was solved, in a more general way, by Krause and Waack (1991). We point out that all known lower bounds rely on the special form of the MOD
6 gate occurring at the bottom of the circuits, so that in fact, proving a lower bound for “general” MOD
6 circuits of depth two is still an open question. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/0020-0190(96)00029-4 |