The area-time complexity of the greatest common divisor problem: a lower bound

We use multiple “information-flow barriers” to show that any VLSI chip which computes the greatest common divisor (GCD) of two n-bit binary integers requires area A and time T satisfying AT 2 = Ω(n 2) . Our result implies that, with respect to VLSI area-time bounds, computing the GCD can be no easie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1990-02, Vol.34 (1), p.43-46
Hauptverfasser: Purdy, Carla Neaderhouser, Purdy, George B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use multiple “information-flow barriers” to show that any VLSI chip which computes the greatest common divisor (GCD) of two n-bit binary integers requires area A and time T satisfying AT 2 = Ω(n 2) . Our result implies that, with respect to VLSI area-time bounds, computing the GCD can be no easier than multiplication. As a corollary we have AT=Ω( n). This bound is best possible, as is shown by a practical design of Brent and Kung for a systolic binary GCD chip.
ISSN:0020-0190
1872-6119
DOI:10.1016/0020-0190(90)90228-P