The area-time complexity of the greatest common divisor problem: a lower bound
We use multiple “information-flow barriers” to show that any VLSI chip which computes the greatest common divisor (GCD) of two n-bit binary integers requires area A and time T satisfying AT 2 = Ω(n 2) . Our result implies that, with respect to VLSI area-time bounds, computing the GCD can be no easie...
Gespeichert in:
Veröffentlicht in: | Information processing letters 1990-02, Vol.34 (1), p.43-46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use multiple “information-flow barriers” to show that any VLSI chip which computes the greatest common divisor (GCD) of two
n-bit binary integers requires area
A and time
T satisfying
AT
2 = Ω(n
2)
. Our result implies that, with respect to VLSI area-time bounds, computing the GCD can be no easier than multiplication. As a corollary we have
AT=Ω(
n). This bound is best possible, as is shown by a practical design of Brent and Kung for a systolic binary GCD chip. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/0020-0190(90)90228-P |