A Dichotomy in the Complexity of Propositional Circumscription

The inference problem for propositional circumscription is known to be highly intractable and, in fact, harder than the inference problem for classical propositional logic. More precisely, in its full generality this problem is n 2 P -complete, which means that it has the same inherent computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2004-12, Vol.37 (6), p.695-715
Hauptverfasser: Kirousis, Lefteris M., Kolaitis, Phokion G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inference problem for propositional circumscription is known to be highly intractable and, in fact, harder than the inference problem for classical propositional logic. More precisely, in its full generality this problem is n 2 P -complete, which means that it has the same inherent computational complexity as the satisfiability problem for quantified Boolean formulas with two alternations (universal-existential) of quantifiers. We use Schaefer's framework of generalized satisfiability problems to study the family of all restricted cases of the inference problem for propositional circumscription. Our main result yields a complete classification of the "truly hard" (n 2 P -complete) and the "easier" cases of this problem (reducible to the inference problem for classical propositional logic). Specifically, we establish a dichotomy theorem which asserts that each such restricted case either is n 2 P -complete or is in coNP. Moreover, we provide efficiently checkable criteria that tell apart the "truly hard" cases from the "easier" ones. We show our results both when the formulas involved are and are not allowed to contain constants. The present work complements a recent paper by the same authors, where a complete classification into hard and easy cases of the model-checking problem in circumscription was established. [PUBLICATION ABSTRACT]
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-004-1152-8