On the Incompressibility of Monotone DNFs

We prove optimal lower bounds for multilinear circuits and for monotone circuits with bounded depth. These lower bounds state that, in order to compute certain functions, these circuits need exactly as many OR gates as the respective DNFs. The proofs exploit a property of the functions that is based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2007-08, Vol.41 (2), p.211-231
1. Verfasser: Krieger, Matthias P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 2
container_start_page 211
container_title Theory of computing systems
container_volume 41
creator Krieger, Matthias P.
description We prove optimal lower bounds for multilinear circuits and for monotone circuits with bounded depth. These lower bounds state that, in order to compute certain functions, these circuits need exactly as many OR gates as the respective DNFs. The proofs exploit a property of the functions that is based solely on prime implicant structure. Due to this feature, the lower bounds proved also hold for approximations of the considered functions that are similar to slice functions. Known lower bound arguments cannot handle these kinds of approximations. In order to show limitations of our approach, we prove that cliques of size n - 1 can be detected in a graph with n vertices by monotone formulas with O(log n) OR gates. Our lower bound for multilinear circuits improves a lower bound due to Borodin, Razborov and Smolensky for nondeterministic read-once branching programs computing the clique function. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00224-007-2013-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237221548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1309315021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-8011fdc31934dc91f2637f754e5f8aa92b0f6de679371d801554064dea8a9c003</originalsourceid><addsrcrecordid>eNotkD1PwzAQQC0EEqXwA9giNgbDnT_ieESFQqVCF5gt17FFqjYudjq0v56EMN0bnu5Oj5BbhAcEUI8ZgDFBe6QMkNPTGZmg4JyC0HD-x4wKLuGSXOW8AQBeAUzI_aotum9fLFoXd_vkc27WzbbpjkUMxXtsYxdbXzx_zPM1uQh2m_3N_5ySr_nL5-yNLlevi9nTkjqmWEcrQAy146i5qJ3GwEqugpLCy1BZq9kaQln7UmmusO5tKQWUova2str1b03J3bh3n-LPwefObOIhtf1Jw7hiDKWoeglHyaWYc_LB7FOzs-loEMwQxIxBzIBDEHPiv_7EUTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237221548</pqid></control><display><type>article</type><title>On the Incompressibility of Monotone DNFs</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Krieger, Matthias P.</creator><creatorcontrib>Krieger, Matthias P.</creatorcontrib><description>We prove optimal lower bounds for multilinear circuits and for monotone circuits with bounded depth. These lower bounds state that, in order to compute certain functions, these circuits need exactly as many OR gates as the respective DNFs. The proofs exploit a property of the functions that is based solely on prime implicant structure. Due to this feature, the lower bounds proved also hold for approximations of the considered functions that are similar to slice functions. Known lower bound arguments cannot handle these kinds of approximations. In order to show limitations of our approach, we prove that cliques of size n - 1 can be detected in a graph with n vertices by monotone formulas with O(log n) OR gates. Our lower bound for multilinear circuits improves a lower bound due to Borodin, Razborov and Smolensky for nondeterministic read-once branching programs computing the clique function. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-007-2013-z</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Approximation ; Boolean ; Circuits ; Variables</subject><ispartof>Theory of computing systems, 2007-08, Vol.41 (2), p.211-231</ispartof><rights>Springer 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-8011fdc31934dc91f2637f754e5f8aa92b0f6de679371d801554064dea8a9c003</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Krieger, Matthias P.</creatorcontrib><title>On the Incompressibility of Monotone DNFs</title><title>Theory of computing systems</title><description>We prove optimal lower bounds for multilinear circuits and for monotone circuits with bounded depth. These lower bounds state that, in order to compute certain functions, these circuits need exactly as many OR gates as the respective DNFs. The proofs exploit a property of the functions that is based solely on prime implicant structure. Due to this feature, the lower bounds proved also hold for approximations of the considered functions that are similar to slice functions. Known lower bound arguments cannot handle these kinds of approximations. In order to show limitations of our approach, we prove that cliques of size n - 1 can be detected in a graph with n vertices by monotone formulas with O(log n) OR gates. Our lower bound for multilinear circuits improves a lower bound due to Borodin, Razborov and Smolensky for nondeterministic read-once branching programs computing the clique function. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Boolean</subject><subject>Circuits</subject><subject>Variables</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkD1PwzAQQC0EEqXwA9giNgbDnT_ieESFQqVCF5gt17FFqjYudjq0v56EMN0bnu5Oj5BbhAcEUI8ZgDFBe6QMkNPTGZmg4JyC0HD-x4wKLuGSXOW8AQBeAUzI_aotum9fLFoXd_vkc27WzbbpjkUMxXtsYxdbXzx_zPM1uQh2m_3N_5ySr_nL5-yNLlevi9nTkjqmWEcrQAy146i5qJ3GwEqugpLCy1BZq9kaQln7UmmusO5tKQWUova2str1b03J3bh3n-LPwefObOIhtf1Jw7hiDKWoeglHyaWYc_LB7FOzs-loEMwQxIxBzIBDEHPiv_7EUTA</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Krieger, Matthias P.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200708</creationdate><title>On the Incompressibility of Monotone DNFs</title><author>Krieger, Matthias P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-8011fdc31934dc91f2637f754e5f8aa92b0f6de679371d801554064dea8a9c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Approximation</topic><topic>Boolean</topic><topic>Circuits</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krieger, Matthias P.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krieger, Matthias P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Incompressibility of Monotone DNFs</atitle><jtitle>Theory of computing systems</jtitle><date>2007-08</date><risdate>2007</risdate><volume>41</volume><issue>2</issue><spage>211</spage><epage>231</epage><pages>211-231</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>We prove optimal lower bounds for multilinear circuits and for monotone circuits with bounded depth. These lower bounds state that, in order to compute certain functions, these circuits need exactly as many OR gates as the respective DNFs. The proofs exploit a property of the functions that is based solely on prime implicant structure. Due to this feature, the lower bounds proved also hold for approximations of the considered functions that are similar to slice functions. Known lower bound arguments cannot handle these kinds of approximations. In order to show limitations of our approach, we prove that cliques of size n - 1 can be detected in a graph with n vertices by monotone formulas with O(log n) OR gates. Our lower bound for multilinear circuits improves a lower bound due to Borodin, Razborov and Smolensky for nondeterministic read-once branching programs computing the clique function. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00224-007-2013-z</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2007-08, Vol.41 (2), p.211-231
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_237221548
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Approximation
Boolean
Circuits
Variables
title On the Incompressibility of Monotone DNFs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Incompressibility%20of%20Monotone%20DNFs&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Krieger,%20Matthias%20P.&rft.date=2007-08&rft.volume=41&rft.issue=2&rft.spage=211&rft.epage=231&rft.pages=211-231&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-007-2013-z&rft_dat=%3Cproquest_cross%3E1309315021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237221548&rft_id=info:pmid/&rfr_iscdi=true