On the Incompressibility of Monotone DNFs
We prove optimal lower bounds for multilinear circuits and for monotone circuits with bounded depth. These lower bounds state that, in order to compute certain functions, these circuits need exactly as many OR gates as the respective DNFs. The proofs exploit a property of the functions that is based...
Gespeichert in:
Veröffentlicht in: | Theory of computing systems 2007-08, Vol.41 (2), p.211-231 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove optimal lower bounds for multilinear circuits and for monotone circuits with bounded depth. These lower bounds state that, in order to compute certain functions, these circuits need exactly as many OR gates as the respective DNFs. The proofs exploit a property of the functions that is based solely on prime implicant structure. Due to this feature, the lower bounds proved also hold for approximations of the considered functions that are similar to slice functions. Known lower bound arguments cannot handle these kinds of approximations. In order to show limitations of our approach, we prove that cliques of size n - 1 can be detected in a graph with n vertices by monotone formulas with O(log n) OR gates. Our lower bound for multilinear circuits improves a lower bound due to Borodin, Razborov and Smolensky for nondeterministic read-once branching programs computing the clique function. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1432-4350 1433-0490 |
DOI: | 10.1007/s00224-007-2013-z |