Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg—Landau Equations

This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg-Landau equations driven by additive noise with α ε (0,1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2020-03, Vol.36 (3), p.318-336
Hauptverfasser: Guo, Chun Xiao, Shu, Ji, Wang, Xiao Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg-Landau equations driven by additive noise with α ε (0,1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system. Second, we derive uniform estimates of solutions and establish the existence and uniqueness of tempered pullback random attractors for the equation in H . At last, we prove the finiteness of fractal dimension of random attractors.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-020-8407-4