Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg—Landau Equations
This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg-Landau equations driven by additive noise with α ε (0,1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system....
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2020-03, Vol.36 (3), p.318-336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg-Landau equations driven by additive noise with α ε (0,1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system. Second, we derive uniform estimates of solutions and establish the existence and uniqueness of tempered pullback random attractors for the equation in
H
. At last, we prove the finiteness of fractal dimension of random attractors. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-020-8407-4 |