Maximal regularity with weights for parabolic problems with inhomogeneous boundary conditions

In this paper, we establish weighted L q – L p -maximal regularity for linear vector-valued parabolic initial-boundary value problems with inhomogeneous boundary conditions of static type. The weights we consider are power weights in time and in space, and yield flexibility in the optimal regularity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2020-03, Vol.20 (1), p.59-108
1. Verfasser: Lindemulder, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish weighted L q – L p -maximal regularity for linear vector-valued parabolic initial-boundary value problems with inhomogeneous boundary conditions of static type. The weights we consider are power weights in time and in space, and yield flexibility in the optimal regularity of the initial-boundary data and allow to avoid compatibility conditions at the boundary. The novelty of the followed approach is the use of weighted anisotropic mixed-norm Banach space-valued function spaces of Sobolev, Bessel potential, Triebel–Lizorkin and Besov type, whose trace theory is also subject of study.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-019-00515-7