Blind image quality assessment based on statistics features and perceptual features
Blind image quality assessment (BIQA) aims to evaluate the quality of an image without information regarding its reference image. In this paper, we proposed a novel BIQA method, which combines thirty six natural scene statistics (NSS) features, two color statistics features and four perceptual featu...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2020-01, Vol.38 (3), p.3515-3526 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blind image quality assessment (BIQA) aims to evaluate the quality of an image without information regarding its reference image. In this paper, we proposed a novel BIQA method, which combines thirty six natural scene statistics (NSS) features, two color statistics features and four perceptual features to construct an image quality assessment model. Support Vector Regression (SVR) is adopted to build the relationship between these features and image quality scores, yielding a measure of image quality. Experimental results in LIVE, TID2013 databases and their cross validations show that the proposed method records a higher correlations with human subjective judgments of visual quality and delivers highly competitive performance with state-of-the-art BIQA models. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-190998 |