Conditions and characteristics of droplets breakup for industrial waste-derived fuel suspensions ignited in high-temperature air
[Display omitted] •Breakup conditions and characteristics were established for droplets of waste-derived fuels, when ignited.•Droplets breakup enhances burning out of fuel components (fine coal and oil).•Both ignition delay time and combustion duration do not exceed 5 s.•A large group of properties...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2020-04, Vol.265, p.116915, Article 116915 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Breakup conditions and characteristics were established for droplets of waste-derived fuels, when ignited.•Droplets breakup enhances burning out of fuel components (fine coal and oil).•Both ignition delay time and combustion duration do not exceed 5 s.•A large group of properties was analyzed for separate fuel components.•Hypothesis was formulated about the influence of fuel composition on droplets breakup.
This research is focused on the ignition and combustion mechanisms and characteristics of single droplets of seven different composite liquid fuels, based on wet coal processing waste (fine coal + 50 wt% of water) with 40 wt% of vegetable oils (castor, rapeseed) and used petroleum-based oils (lubricants – motor, compressor, and turbine oils; working fluid – hydraulic oil; insulating fluid – transformer oil). The combustion of waste-derived fuel suspensions is initiated by introducing single droplets into heated motionless air with a temperature of 700–1,000 °C. Threshold conditions (component composition, concentration of combustible liquid, and temperature) were detected, for which micro-explosions during the induction period resulted in the full breakup of droplets, combustion of products (vapors and fine particles) and their subsequent rapid burnout. A high-speed video recording system is used to establish consistent patterns of physical and chemical processes, as well as ignition and combustion characteristics (ignition delay times, burnout time, velocity of breakup products, and size of their burnout area) for a group of fuels under the conditions of droplet breakup. A hypothesis about how the composition of the component affects the breakup of droplets during ignition was formulated based on the results of analyzing the properties (initial boiling point and evaporation rates of oils, their surface tension and surface free energy, as well as wettability of dry coal processing waste) of separate fuel components. |
---|---|
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2019.116915 |