In Silico Design of Novel Mutant Anti-MUC1 Aptamers for Targeted Cancer Therapy
The transmembrane glycoprotein mucin 1 (MUC1) is an attractive tumor marker for cancer therapy and diagnosis. The nine amino acid extracellular epitope APDTRPAPG of this protein is selectively recognized by the S2.2 single-stranded DNA anti-MUC1 aptamer, which has emerged as a promising template...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2020-02, Vol.60 (2), p.786-793 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transmembrane glycoprotein mucin 1 (MUC1) is an attractive tumor marker for cancer therapy and diagnosis. The nine amino acid extracellular epitope APDTRPAPG of this protein is selectively recognized by the S2.2 single-stranded DNA anti-MUC1 aptamer, which has emerged as a promising template for designing novel targeting agents for MUC1-directed therapy. In this work, 100 ns molecular dynamics (MD) simulations, MM/GBSA binding free energy calculations, and conformational analysis were employed to propose a novel prospective anti-MUC1 aptamer with increased affinity toward the MUC1 epitope resulting from the double mutation of the T11 and T12 residues with PSU and U nucleosides, respectively. The double mutant aptamer exhibits a tight interaction with the MUC1 epitope and adopts a groove conformation that structurally favors the intermolecular contact with the epitope through the intermediate T11-A18 region leaving the 3′ and 5′ ends free for further chemical conjugation with a nanocarrier or pharmaceutical. These results are valuable to gain understanding about the molecular features governing aptamer-epitope interactions and constitute a first key step for the design of novel aptamer-based nanocarriers for MUC1-targeted cancer therapy. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.9b00756 |