A Lagrangian nodal integration method for free-surface fluid flows

We present a Lagrangian nodal integration method for the simulation of Newtonian and non-Newtonian free-surface fluid flows. The proposed nodal Lagrangian method uses a finite element mesh to discretize the computational domain and to define the (linear) shape functions for the unknown nodal variabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-04, Vol.361, p.112816, Article 112816
Hauptverfasser: Franci, Alessandro, Cremonesi, Massimiliano, Perego, Umberto, Oñate, Eugenio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112816
container_title Computer methods in applied mechanics and engineering
container_volume 361
creator Franci, Alessandro
Cremonesi, Massimiliano
Perego, Umberto
Oñate, Eugenio
description We present a Lagrangian nodal integration method for the simulation of Newtonian and non-Newtonian free-surface fluid flows. The proposed nodal Lagrangian method uses a finite element mesh to discretize the computational domain and to define the (linear) shape functions for the unknown nodal variables, as in the standard Particle Finite Element Method (PFEM). In this approach, however, the integrals are performed over nodal patches and not over elements, and strains/stresses are defined at nodes and not at Gauss points. This allows to limit the drawbacks associated with the remeshing and leads to a more accurate stress computation than in the classical elemental PFEM. Several numerical tests, in 2D and in 3D, are presented to validate the proposed nodal PFEM. In all cases, the method has shown a very good agreement with analytical solutions and with experimental and numerical results from the literature. A thorough comparison between nodal and elemental PFEMs is also presented, focusing on crucial issues, such as solution accuracy, convergence, mass conservation and sensitivity to mesh distortion. •Derivation of a new node-based Particle Finite Element Method for free-surface fluid flow.•Comparison of results accuracy and convergence between nodal-PFEM and standard elemental-PFEM.•Application to both Newtonian and non-Newtonian fluid models.•Presentation and analysis of several validation tests, in 2D and 3D.
doi_str_mv 10.1016/j.cma.2019.112816
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371769330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251930708X</els_id><sourcerecordid>2371769330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cbd935b6770a8d2aa162abd252fa72f7bc805bd3b505df5ddbcf20c19ffe4d8b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcF1615TJoUV-PgCwbc6DrkOaZ0kjFpFf-9Gerau7lwOOfewwfANYINgqi97Ru9lw2GqGsQwhy1J2CBOOtqjAg_BQsIV7RmHNNzcJFzD8twhBfgfl1t5S7JsPMyVCEaOVQ-jLZIo4-h2tvxI5rKxVS5ZG2dp-SktpUbJl_kIX7nS3Dm5JDt1d9egvfHh7fNc719fXrZrLe1Ji0fa61MR6hqGYOSGywlarFUBlPsJMOOKc0hVYYoCqlx1BilHYYadc7ZleGKLMHNfPeQ4udk8yj6OKVQXgpMGGJtRwgsLjS7dIo5J-vEIfm9TD8CQXFEJXpRUIkjKjGjKpm7OWNL_S9vk8ja26Ct8cnqUZjo_0n_AnE6cYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371769330</pqid></control><display><type>article</type><title>A Lagrangian nodal integration method for free-surface fluid flows</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Franci, Alessandro ; Cremonesi, Massimiliano ; Perego, Umberto ; Oñate, Eugenio</creator><creatorcontrib>Franci, Alessandro ; Cremonesi, Massimiliano ; Perego, Umberto ; Oñate, Eugenio</creatorcontrib><description>We present a Lagrangian nodal integration method for the simulation of Newtonian and non-Newtonian free-surface fluid flows. The proposed nodal Lagrangian method uses a finite element mesh to discretize the computational domain and to define the (linear) shape functions for the unknown nodal variables, as in the standard Particle Finite Element Method (PFEM). In this approach, however, the integrals are performed over nodal patches and not over elements, and strains/stresses are defined at nodes and not at Gauss points. This allows to limit the drawbacks associated with the remeshing and leads to a more accurate stress computation than in the classical elemental PFEM. Several numerical tests, in 2D and in 3D, are presented to validate the proposed nodal PFEM. In all cases, the method has shown a very good agreement with analytical solutions and with experimental and numerical results from the literature. A thorough comparison between nodal and elemental PFEMs is also presented, focusing on crucial issues, such as solution accuracy, convergence, mass conservation and sensitivity to mesh distortion. •Derivation of a new node-based Particle Finite Element Method for free-surface fluid flow.•Comparison of results accuracy and convergence between nodal-PFEM and standard elemental-PFEM.•Application to both Newtonian and non-Newtonian fluid models.•Presentation and analysis of several validation tests, in 2D and 3D.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.112816</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational fluid dynamics ; Computer simulation ; Exact solutions ; Finite element method ; Fluid flow ; Free surfaces ; Free-surface ; Nodal integration ; Nodal-PFEM ; PFEM ; Shape functions</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-04, Vol.361, p.112816, Article 112816</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cbd935b6770a8d2aa162abd252fa72f7bc805bd3b505df5ddbcf20c19ffe4d8b3</citedby><cites>FETCH-LOGICAL-c368t-cbd935b6770a8d2aa162abd252fa72f7bc805bd3b505df5ddbcf20c19ffe4d8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004578251930708X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Franci, Alessandro</creatorcontrib><creatorcontrib>Cremonesi, Massimiliano</creatorcontrib><creatorcontrib>Perego, Umberto</creatorcontrib><creatorcontrib>Oñate, Eugenio</creatorcontrib><title>A Lagrangian nodal integration method for free-surface fluid flows</title><title>Computer methods in applied mechanics and engineering</title><description>We present a Lagrangian nodal integration method for the simulation of Newtonian and non-Newtonian free-surface fluid flows. The proposed nodal Lagrangian method uses a finite element mesh to discretize the computational domain and to define the (linear) shape functions for the unknown nodal variables, as in the standard Particle Finite Element Method (PFEM). In this approach, however, the integrals are performed over nodal patches and not over elements, and strains/stresses are defined at nodes and not at Gauss points. This allows to limit the drawbacks associated with the remeshing and leads to a more accurate stress computation than in the classical elemental PFEM. Several numerical tests, in 2D and in 3D, are presented to validate the proposed nodal PFEM. In all cases, the method has shown a very good agreement with analytical solutions and with experimental and numerical results from the literature. A thorough comparison between nodal and elemental PFEMs is also presented, focusing on crucial issues, such as solution accuracy, convergence, mass conservation and sensitivity to mesh distortion. •Derivation of a new node-based Particle Finite Element Method for free-surface fluid flow.•Comparison of results accuracy and convergence between nodal-PFEM and standard elemental-PFEM.•Application to both Newtonian and non-Newtonian fluid models.•Presentation and analysis of several validation tests, in 2D and 3D.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>Free-surface</subject><subject>Nodal integration</subject><subject>Nodal-PFEM</subject><subject>PFEM</subject><subject>Shape functions</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcF1615TJoUV-PgCwbc6DrkOaZ0kjFpFf-9Gerau7lwOOfewwfANYINgqi97Ru9lw2GqGsQwhy1J2CBOOtqjAg_BQsIV7RmHNNzcJFzD8twhBfgfl1t5S7JsPMyVCEaOVQ-jLZIo4-h2tvxI5rKxVS5ZG2dp-SktpUbJl_kIX7nS3Dm5JDt1d9egvfHh7fNc719fXrZrLe1Ji0fa61MR6hqGYOSGywlarFUBlPsJMOOKc0hVYYoCqlx1BilHYYadc7ZleGKLMHNfPeQ4udk8yj6OKVQXgpMGGJtRwgsLjS7dIo5J-vEIfm9TD8CQXFEJXpRUIkjKjGjKpm7OWNL_S9vk8ja26Ct8cnqUZjo_0n_AnE6cYQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Franci, Alessandro</creator><creator>Cremonesi, Massimiliano</creator><creator>Perego, Umberto</creator><creator>Oñate, Eugenio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>A Lagrangian nodal integration method for free-surface fluid flows</title><author>Franci, Alessandro ; Cremonesi, Massimiliano ; Perego, Umberto ; Oñate, Eugenio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cbd935b6770a8d2aa162abd252fa72f7bc805bd3b505df5ddbcf20c19ffe4d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>Free-surface</topic><topic>Nodal integration</topic><topic>Nodal-PFEM</topic><topic>PFEM</topic><topic>Shape functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franci, Alessandro</creatorcontrib><creatorcontrib>Cremonesi, Massimiliano</creatorcontrib><creatorcontrib>Perego, Umberto</creatorcontrib><creatorcontrib>Oñate, Eugenio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franci, Alessandro</au><au>Cremonesi, Massimiliano</au><au>Perego, Umberto</au><au>Oñate, Eugenio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lagrangian nodal integration method for free-surface fluid flows</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>361</volume><spage>112816</spage><pages>112816-</pages><artnum>112816</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We present a Lagrangian nodal integration method for the simulation of Newtonian and non-Newtonian free-surface fluid flows. The proposed nodal Lagrangian method uses a finite element mesh to discretize the computational domain and to define the (linear) shape functions for the unknown nodal variables, as in the standard Particle Finite Element Method (PFEM). In this approach, however, the integrals are performed over nodal patches and not over elements, and strains/stresses are defined at nodes and not at Gauss points. This allows to limit the drawbacks associated with the remeshing and leads to a more accurate stress computation than in the classical elemental PFEM. Several numerical tests, in 2D and in 3D, are presented to validate the proposed nodal PFEM. In all cases, the method has shown a very good agreement with analytical solutions and with experimental and numerical results from the literature. A thorough comparison between nodal and elemental PFEMs is also presented, focusing on crucial issues, such as solution accuracy, convergence, mass conservation and sensitivity to mesh distortion. •Derivation of a new node-based Particle Finite Element Method for free-surface fluid flow.•Comparison of results accuracy and convergence between nodal-PFEM and standard elemental-PFEM.•Application to both Newtonian and non-Newtonian fluid models.•Presentation and analysis of several validation tests, in 2D and 3D.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.112816</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-04, Vol.361, p.112816, Article 112816
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2371769330
source ScienceDirect Journals (5 years ago - present)
subjects Computational fluid dynamics
Computer simulation
Exact solutions
Finite element method
Fluid flow
Free surfaces
Free-surface
Nodal integration
Nodal-PFEM
PFEM
Shape functions
title A Lagrangian nodal integration method for free-surface fluid flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lagrangian%20nodal%20integration%20method%20for%20free-surface%20fluid%20flows&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Franci,%20Alessandro&rft.date=2020-04-01&rft.volume=361&rft.spage=112816&rft.pages=112816-&rft.artnum=112816&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.112816&rft_dat=%3Cproquest_cross%3E2371769330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371769330&rft_id=info:pmid/&rft_els_id=S004578251930708X&rfr_iscdi=true