A Lagrangian nodal integration method for free-surface fluid flows
We present a Lagrangian nodal integration method for the simulation of Newtonian and non-Newtonian free-surface fluid flows. The proposed nodal Lagrangian method uses a finite element mesh to discretize the computational domain and to define the (linear) shape functions for the unknown nodal variabl...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2020-04, Vol.361, p.112816, Article 112816 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a Lagrangian nodal integration method for the simulation of Newtonian and non-Newtonian free-surface fluid flows. The proposed nodal Lagrangian method uses a finite element mesh to discretize the computational domain and to define the (linear) shape functions for the unknown nodal variables, as in the standard Particle Finite Element Method (PFEM). In this approach, however, the integrals are performed over nodal patches and not over elements, and strains/stresses are defined at nodes and not at Gauss points. This allows to limit the drawbacks associated with the remeshing and leads to a more accurate stress computation than in the classical elemental PFEM. Several numerical tests, in 2D and in 3D, are presented to validate the proposed nodal PFEM. In all cases, the method has shown a very good agreement with analytical solutions and with experimental and numerical results from the literature. A thorough comparison between nodal and elemental PFEMs is also presented, focusing on crucial issues, such as solution accuracy, convergence, mass conservation and sensitivity to mesh distortion.
•Derivation of a new node-based Particle Finite Element Method for free-surface fluid flow.•Comparison of results accuracy and convergence between nodal-PFEM and standard elemental-PFEM.•Application to both Newtonian and non-Newtonian fluid models.•Presentation and analysis of several validation tests, in 2D and 3D. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2019.112816 |