Significant enhancement of thermal conductivity in graphite/polyester composite via interfacial π–π interaction

Interfacial thermal resistance between matrix and filler is one of the most serious factors hindering heat transfer in composites. Here, a type of liquid crystalline polyester (LCP) containing phenyl pendant groups was intended to blend with pristine graphite by interfacial interaction. The intensit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer international 2020-04, Vol.69 (4), p.346-354
Hauptverfasser: Chen, Weilong, Wu, Kun, Tan, Zhiyou, Lu, Mangeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 4
container_start_page 346
container_title Polymer international
container_volume 69
creator Chen, Weilong
Wu, Kun
Tan, Zhiyou
Lu, Mangeng
description Interfacial thermal resistance between matrix and filler is one of the most serious factors hindering heat transfer in composites. Here, a type of liquid crystalline polyester (LCP) containing phenyl pendant groups was intended to blend with pristine graphite by interfacial interaction. The intensity at 26.6° of the wide angle X‐ray diffraction pattern which exceeded that of pristine graphite indicated the existence of a strong interfacial π–π interaction. Both DSC and XRD tests showed that the ordered structure of the LCP matrix is directly affected by the mass fraction of graphite, indicating the interfacial interaction between LCP and graphite. By increasing the content of graphite, the thermal diffusivity showed a sharp increment by 1004%. The maximum thermal conductivity of the composite reached 28.613 W m−1 K−1, which was seven times that of traditional thermoplastic blended with graphite. Compared with the data calculated using effective medium theory, interfacial interaction plays a significant role in enhancing the thermal conductivity of the composites. Furthermore, the maximum tensile strength of this series of composites reached 13.3 MPa and the maximum Young's modulus reached 1067 MPa, exhibiting a potential guideline for further applications in flexible electronics. © 2019 Society of Chemical Industry Graphite, liquid crystalline phase, amorphous phase, phenyl pendant group, repeating units of graphite layer.
doi_str_mv 10.1002/pi.5956
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371553856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371553856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2896-c3c1201459e0a70661413c09fa7b9a51a4ac87ae2bc5288437ebfd5099edd7343</originalsourceid><addsrcrecordid>eNp10N1KwzAUB_AgCs4pvkLBCy-k20nTtM2lDD8GAwX1OmRpumW0SU06pXd7Bx9s7-CTmFlvvTrhzy_nHA5ClxgmGCCZtnpCGc2O0AgDy2PASXaMRsAoiwsM5BSdeb8BgIIxNkL-Ra-MrrQUpouUWQsjVaPC21ZRt1auEXUkrSm3stMfuusjbaKVE-1ad2ra2rpXvlMukKa1PmTRhxbBhKwSUofP-9337mu_GzIRulhzjk4qUXt18VfH6O3-7nX2GC-eHuaz20Usk4JlsSQSJ4BTyhSIHLIMp5hIYJXIl0xQLFIhi1yoZClpUhQpydWyKikwpsoyJykZo6uhb-vs-zYsyjd260wYyROSY0pJQbOgrgclnfXeqYq3TjfC9RwDP1yUt5ofLhrkzSA_da36_xh_nv_qH3N-enA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371553856</pqid></control><display><type>article</type><title>Significant enhancement of thermal conductivity in graphite/polyester composite via interfacial π–π interaction</title><source>Access via Wiley Online Library</source><creator>Chen, Weilong ; Wu, Kun ; Tan, Zhiyou ; Lu, Mangeng</creator><creatorcontrib>Chen, Weilong ; Wu, Kun ; Tan, Zhiyou ; Lu, Mangeng</creatorcontrib><description>Interfacial thermal resistance between matrix and filler is one of the most serious factors hindering heat transfer in composites. Here, a type of liquid crystalline polyester (LCP) containing phenyl pendant groups was intended to blend with pristine graphite by interfacial interaction. The intensity at 26.6° of the wide angle X‐ray diffraction pattern which exceeded that of pristine graphite indicated the existence of a strong interfacial π–π interaction. Both DSC and XRD tests showed that the ordered structure of the LCP matrix is directly affected by the mass fraction of graphite, indicating the interfacial interaction between LCP and graphite. By increasing the content of graphite, the thermal diffusivity showed a sharp increment by 1004%. The maximum thermal conductivity of the composite reached 28.613 W m−1 K−1, which was seven times that of traditional thermoplastic blended with graphite. Compared with the data calculated using effective medium theory, interfacial interaction plays a significant role in enhancing the thermal conductivity of the composites. Furthermore, the maximum tensile strength of this series of composites reached 13.3 MPa and the maximum Young's modulus reached 1067 MPa, exhibiting a potential guideline for further applications in flexible electronics. © 2019 Society of Chemical Industry Graphite, liquid crystalline phase, amorphous phase, phenyl pendant group, repeating units of graphite layer.</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.5956</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Composite materials ; Diffraction patterns ; Effective medium theory ; Flexible components ; Graphite ; Heat conductivity ; Heat transfer ; interfacial interaction ; Liquid crystals ; Mechanical properties ; Modulus of elasticity ; Polyesters ; Tensile strength ; Thermal conductivity ; Thermal diffusivity ; Thermal resistance ; Young's modulus</subject><ispartof>Polymer international, 2020-04, Vol.69 (4), p.346-354</ispartof><rights>2019 Society of Chemical Industry</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2896-c3c1201459e0a70661413c09fa7b9a51a4ac87ae2bc5288437ebfd5099edd7343</citedby><cites>FETCH-LOGICAL-c2896-c3c1201459e0a70661413c09fa7b9a51a4ac87ae2bc5288437ebfd5099edd7343</cites><orcidid>0000-0001-6494-8851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpi.5956$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpi.5956$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Weilong</creatorcontrib><creatorcontrib>Wu, Kun</creatorcontrib><creatorcontrib>Tan, Zhiyou</creatorcontrib><creatorcontrib>Lu, Mangeng</creatorcontrib><title>Significant enhancement of thermal conductivity in graphite/polyester composite via interfacial π–π interaction</title><title>Polymer international</title><description>Interfacial thermal resistance between matrix and filler is one of the most serious factors hindering heat transfer in composites. Here, a type of liquid crystalline polyester (LCP) containing phenyl pendant groups was intended to blend with pristine graphite by interfacial interaction. The intensity at 26.6° of the wide angle X‐ray diffraction pattern which exceeded that of pristine graphite indicated the existence of a strong interfacial π–π interaction. Both DSC and XRD tests showed that the ordered structure of the LCP matrix is directly affected by the mass fraction of graphite, indicating the interfacial interaction between LCP and graphite. By increasing the content of graphite, the thermal diffusivity showed a sharp increment by 1004%. The maximum thermal conductivity of the composite reached 28.613 W m−1 K−1, which was seven times that of traditional thermoplastic blended with graphite. Compared with the data calculated using effective medium theory, interfacial interaction plays a significant role in enhancing the thermal conductivity of the composites. Furthermore, the maximum tensile strength of this series of composites reached 13.3 MPa and the maximum Young's modulus reached 1067 MPa, exhibiting a potential guideline for further applications in flexible electronics. © 2019 Society of Chemical Industry Graphite, liquid crystalline phase, amorphous phase, phenyl pendant group, repeating units of graphite layer.</description><subject>Composite materials</subject><subject>Diffraction patterns</subject><subject>Effective medium theory</subject><subject>Flexible components</subject><subject>Graphite</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>interfacial interaction</subject><subject>Liquid crystals</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Polyesters</subject><subject>Tensile strength</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>Thermal resistance</subject><subject>Young's modulus</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10N1KwzAUB_AgCs4pvkLBCy-k20nTtM2lDD8GAwX1OmRpumW0SU06pXd7Bx9s7-CTmFlvvTrhzy_nHA5ClxgmGCCZtnpCGc2O0AgDy2PASXaMRsAoiwsM5BSdeb8BgIIxNkL-Ra-MrrQUpouUWQsjVaPC21ZRt1auEXUkrSm3stMfuusjbaKVE-1ad2ra2rpXvlMukKa1PmTRhxbBhKwSUofP-9337mu_GzIRulhzjk4qUXt18VfH6O3-7nX2GC-eHuaz20Usk4JlsSQSJ4BTyhSIHLIMp5hIYJXIl0xQLFIhi1yoZClpUhQpydWyKikwpsoyJykZo6uhb-vs-zYsyjd260wYyROSY0pJQbOgrgclnfXeqYq3TjfC9RwDP1yUt5ofLhrkzSA_da36_xh_nv_qH3N-enA</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Chen, Weilong</creator><creator>Wu, Kun</creator><creator>Tan, Zhiyou</creator><creator>Lu, Mangeng</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6494-8851</orcidid></search><sort><creationdate>202004</creationdate><title>Significant enhancement of thermal conductivity in graphite/polyester composite via interfacial π–π interaction</title><author>Chen, Weilong ; Wu, Kun ; Tan, Zhiyou ; Lu, Mangeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2896-c3c1201459e0a70661413c09fa7b9a51a4ac87ae2bc5288437ebfd5099edd7343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Composite materials</topic><topic>Diffraction patterns</topic><topic>Effective medium theory</topic><topic>Flexible components</topic><topic>Graphite</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>interfacial interaction</topic><topic>Liquid crystals</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Polyesters</topic><topic>Tensile strength</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>Thermal resistance</topic><topic>Young's modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Weilong</creatorcontrib><creatorcontrib>Wu, Kun</creatorcontrib><creatorcontrib>Tan, Zhiyou</creatorcontrib><creatorcontrib>Lu, Mangeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Weilong</au><au>Wu, Kun</au><au>Tan, Zhiyou</au><au>Lu, Mangeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Significant enhancement of thermal conductivity in graphite/polyester composite via interfacial π–π interaction</atitle><jtitle>Polymer international</jtitle><date>2020-04</date><risdate>2020</risdate><volume>69</volume><issue>4</issue><spage>346</spage><epage>354</epage><pages>346-354</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><abstract>Interfacial thermal resistance between matrix and filler is one of the most serious factors hindering heat transfer in composites. Here, a type of liquid crystalline polyester (LCP) containing phenyl pendant groups was intended to blend with pristine graphite by interfacial interaction. The intensity at 26.6° of the wide angle X‐ray diffraction pattern which exceeded that of pristine graphite indicated the existence of a strong interfacial π–π interaction. Both DSC and XRD tests showed that the ordered structure of the LCP matrix is directly affected by the mass fraction of graphite, indicating the interfacial interaction between LCP and graphite. By increasing the content of graphite, the thermal diffusivity showed a sharp increment by 1004%. The maximum thermal conductivity of the composite reached 28.613 W m−1 K−1, which was seven times that of traditional thermoplastic blended with graphite. Compared with the data calculated using effective medium theory, interfacial interaction plays a significant role in enhancing the thermal conductivity of the composites. Furthermore, the maximum tensile strength of this series of composites reached 13.3 MPa and the maximum Young's modulus reached 1067 MPa, exhibiting a potential guideline for further applications in flexible electronics. © 2019 Society of Chemical Industry Graphite, liquid crystalline phase, amorphous phase, phenyl pendant group, repeating units of graphite layer.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pi.5956</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6494-8851</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-8103
ispartof Polymer international, 2020-04, Vol.69 (4), p.346-354
issn 0959-8103
1097-0126
language eng
recordid cdi_proquest_journals_2371553856
source Access via Wiley Online Library
subjects Composite materials
Diffraction patterns
Effective medium theory
Flexible components
Graphite
Heat conductivity
Heat transfer
interfacial interaction
Liquid crystals
Mechanical properties
Modulus of elasticity
Polyesters
Tensile strength
Thermal conductivity
Thermal diffusivity
Thermal resistance
Young's modulus
title Significant enhancement of thermal conductivity in graphite/polyester composite via interfacial π–π interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Significant%20enhancement%20of%20thermal%20conductivity%20in%20graphite/polyester%20composite%20via%20interfacial%20%CF%80%E2%80%93%CF%80%20interaction&rft.jtitle=Polymer%20international&rft.au=Chen,%20Weilong&rft.date=2020-04&rft.volume=69&rft.issue=4&rft.spage=346&rft.epage=354&rft.pages=346-354&rft.issn=0959-8103&rft.eissn=1097-0126&rft_id=info:doi/10.1002/pi.5956&rft_dat=%3Cproquest_cross%3E2371553856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371553856&rft_id=info:pmid/&rfr_iscdi=true