Nodal solutions for fractional elliptic equations involving exponential critical growth
In the present paper, we study the existence of least energy nodal solution for a Dirichlet problem driven by the 12−Laplacian operator of the following type: (−Δ)12u+V(x)u=f(u)in(a,b),u=0inR∖(a,b), where V:[a,b]→[0,+∞) is a continuous potential and f(t) is a nonlinearity that grows like exp(t2) as...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-04, Vol.43 (6), p.3650-3672 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we study the existence of least energy nodal solution for a Dirichlet problem driven by the
12−Laplacian operator of the following type:
(−Δ)12u+V(x)u=f(u)in(a,b),u=0inR∖(a,b),
where
V:[a,b]→[0,+∞) is a continuous potential and
f(t) is a nonlinearity that grows like
exp(t2) as
t→+∞. By using the constraint variational method and quantitative deformation lemma, we obtain a least energy nodal solution
u for the given problem. Moreover, we show that the energy of
u is strictly larger than twice the ground state energy. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.6145 |