On a two‐phase Stefan problem with convective boundary condition including a density jump at the free boundary

We consider a two‐phase Stefan problem for a semi‐infinite body x>0, with a convective boundary condition including a density jump at the free boundary with a time‐dependent heat transfer coefficient of the type h/t, h>0 whose solution was given in D. A. Tarzia, PAMM. Proc. Appl. Math. Mech. 7...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-04, Vol.43 (6), p.3744-3753
Hauptverfasser: Briozzo, Adriana C., Natale, María F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a two‐phase Stefan problem for a semi‐infinite body x>0, with a convective boundary condition including a density jump at the free boundary with a time‐dependent heat transfer coefficient of the type h/t, h>0 whose solution was given in D. A. Tarzia, PAMM. Proc. Appl. Math. Mech. 7, 1040307–1040308 (2007). We demonstrate that the solution to this problem converges to the solution to the analogous one with a temperature boundary condition when the heat transfer coefficient h→+∞. Moreover, we analyze the dependence of the free boundary respecting to the jump density.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6152