Square Functions for Noncommutative Differentially Subordinate Martingales
We prove inequalities involving noncommutative differentially subordinate martingales. More precisely, we prove that if x is a self-adjoint noncommutative martingale and y is weakly differentially subordinate to x then y admits a decomposition dy = a + b + c (resp. dy = z + w ) where a , b ,...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2020-03, Vol.374 (2), p.975-1019 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove inequalities involving noncommutative differentially subordinate martingales. More precisely, we prove that if
x
is a self-adjoint noncommutative martingale and
y
is weakly differentially subordinate to
x
then
y
admits a decomposition
dy
=
a
+
b
+
c
(resp.
dy
=
z
+
w
) where
a
,
b
, and
c
are adapted sequences (resp.
z
and
w
are martingale difference sequences) such that:
‖
(
a
n
)
n
≥
1
‖
L
1
,
∞
(
M
⊗
¯
ℓ
∞
)
+
‖
(
∑
n
≥
1
ε
n
-
1
|
b
n
|
2
)
1
/
2
‖
1
,
∞
+
‖
(
∑
n
≥
1
ε
n
-
1
|
c
n
∗
|
2
)
1
/
2
‖
1
,
∞
≤
C
‖
x
‖
1
(resp.
‖
(
∑
n
≥
1
|
z
n
|
2
)
1
/
2
‖
1
,
∞
+
‖
(
∑
n
≥
1
|
w
n
∗
|
2
)
1
/
2
‖
1
,
∞
≤
C
‖
x
‖
1
)
.
We also prove strong-type (
p
,
p
) versions of the above weak-type results for 1 |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-019-03391-x |