High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes

Screen printing is the most widely used process in the production of printed electronics due to its ability to consistently transfer inks containing a wide range of functional materials onto a range of substrates. However, despite its extensive use, the mechanism by which the ink is transferred thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JCT research 2020-03, Vol.17 (2), p.447-459
Hauptverfasser: Potts, Sarah-Jane, Phillips, Chris, Jewell, Eifion, Clifford, Ben, Lau, Yin Cheung, Claypole, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Screen printing is the most widely used process in the production of printed electronics due to its ability to consistently transfer inks containing a wide range of functional materials onto a range of substrates. However, despite its extensive use, the mechanism by which the ink is transferred through the mesh and onto the substrate is not fully understood. Existing theories are contradictory and lack experimental validation. Therefore, high-speed imaging was used in combination with a screen-printing simulation rig that was designed to provide good optical access to study ink deposition during the screen-printing process. The variation in the four stages of ink flow through the screen, described in the theory by Messerschmitt, has been quantified with respect to changes in snap-off distance and squeegee speed. Analyses of the images were compared with measurements of the ink properties and corroborated with analyses of the prints. This has provided a better understanding of the mechanism by which the ink transfers from the mesh to the substrate and subsequently separates in screen printing. This could be used as the basis for the development of predictive algorithms, as well as to improve the understanding of how to optimize print quality and performance.
ISSN:1547-0091
1935-3804
2168-8028
DOI:10.1007/s11998-019-00291-6