Molecularly engineered hole-transport material for low-cost perovskite solar cells

Triphenylamine- N -phenyl-4-(phenyldiazenyl)aniline (TPA-AZO) is synthesized via a facile CuI-catalyzed reaction and used as a hole transport material (HTM) in perovskite solar cells (PSCs), as an alternative to the expensive spiro-type molecular materials, including commercial 2,2′,7,7′-tetrakis[ N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-03, Vol.11 (9), p.2429-2439
Hauptverfasser: Pashaei, Babak, Bellani, Sebastiano, Shahroosvand, Hashem, Bonaccorso, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triphenylamine- N -phenyl-4-(phenyldiazenyl)aniline (TPA-AZO) is synthesized via a facile CuI-catalyzed reaction and used as a hole transport material (HTM) in perovskite solar cells (PSCs), as an alternative to the expensive spiro-type molecular materials, including commercial 2,2′,7,7′-tetrakis[ N , N -di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD). Experimental and computational investigations reveal that the highest occupied molecular orbital (HOMO) level of TPA-AZO is deeper than that of spiro-OMeTAD, and optimally matches with the conduction band of the perovskite light absorber. The use of TPA-AZO as a HTM results in PSC prototypes with a power conversion efficiency (PCE) approaching that of the spiro-OMeTAD-based reference device (17.86% vs. 19.07%). Moreover, the use of inexpensive starting reagents for the synthesis of TPA-AZO makes the latter a new affordable HTM for PSCs. In particular, the cost of 1 g of TPA-AZO ($22.76) is significantly lower compared to that of spiro-OMeTAD ($170-475). Overall, TPA-AZO-based HTMs are promising candidates for the implementation of viable PSCs in large-scale production. Organic hole transport materials (HTMs) strongly affect the cost of efficient perovskite solar cells. In this work, a newly engineered HTM based on triphenylamine is proposed as a cheap alternative to efficient organic HTMs ( e.g. , spiro-OMeTAD).
ISSN:2041-6520
2041-6539
DOI:10.1039/c9sc05694g