The Spectral Density of Hankel Operators with Piecewise Continuous Symbols
In 1966, H. Widom proved an asymptotic formula for the distribution of eigenvalues of the N × N truncated Hilbert matrix for large values of N . In this paper, we extend this formula to Hankel matrices with symbols in the class of piece-wise continuous functions on the unit circle. Furthermore, we s...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2020-02, Vol.92 (1), Article 1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1966, H. Widom proved an asymptotic formula for the distribution of eigenvalues of the
N
×
N
truncated Hilbert matrix for large values of
N
. In this paper, we extend this formula to Hankel matrices with symbols in the class of piece-wise continuous functions on the unit circle. Furthermore, we show that the distribution of the eigenvalues is independent of the choice of truncation (e.g. square or triangular truncation). |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-019-2556-9 |