The Spectral Density of Hankel Operators with Piecewise Continuous Symbols

In 1966, H. Widom proved an asymptotic formula for the distribution of eigenvalues of the N × N truncated Hilbert matrix for large values of N . In this paper, we extend this formula to Hankel matrices with symbols in the class of piece-wise continuous functions on the unit circle. Furthermore, we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2020-02, Vol.92 (1), Article 1
1. Verfasser: Fedele, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1966, H. Widom proved an asymptotic formula for the distribution of eigenvalues of the N × N truncated Hilbert matrix for large values of N . In this paper, we extend this formula to Hankel matrices with symbols in the class of piece-wise continuous functions on the unit circle. Furthermore, we show that the distribution of the eigenvalues is independent of the choice of truncation (e.g. square or triangular truncation).
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-019-2556-9