Accelerating Power Methods for Higher-order Markov Chains

Higher-order Markov chains play a very important role in many fields, ranging from multilinear PageRank to financial modeling. In this paper, we propose three accelerated higher-order power methods for computing the limiting probability distribution of higher-order Markov chains, namely higher-order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-08
Hauptverfasser: Yu, Gaohang, Zhou, Yi, Lv, Laishui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher-order Markov chains play a very important role in many fields, ranging from multilinear PageRank to financial modeling. In this paper, we propose three accelerated higher-order power methods for computing the limiting probability distribution of higher-order Markov chains, namely higher-order power method with momentum and higher-order quadratic extrapolation method. The convergence results are established, and numerical experiments are reported to show the efficiency of the proposed algorithms. In particular, the non-parametric quadratic extrapolation method is very competitive, and outperforms state-of-the-art competitions.
ISSN:2331-8422