Non-Eulerian Dehn-Sommerville relations

The classical Dehn--Sommerville relations assert that the \(h\)-vector of an Eulerian simplicial complex is symmetric. We establish three generalizations of the Dehn--Sommerville relations: one for the \(h\)-vectors of pure simplicial complexes, another one for the flag \(h\)-vectors of balanced sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-12
Hauptverfasser: Connor Sawaske, Xue, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Dehn--Sommerville relations assert that the \(h\)-vector of an Eulerian simplicial complex is symmetric. We establish three generalizations of the Dehn--Sommerville relations: one for the \(h\)-vectors of pure simplicial complexes, another one for the flag \(h\)-vectors of balanced simplicial complexes and graded posets, and yet another one for the toric \(h\)-vectors of graded posets with restricted singularities. In all of these cases, we express any failure of symmetry in terms of "errors coming from the links." For simplicial complexes, this further extends Klee's semi-Eulerian relations.
ISSN:2331-8422