A Generalized Beurling Theorem for Some Lie Groups
For any real numbers p,q ≥ 1, we present in this paper a ( p, q )-generalized version of Beurling’s uncertainty principle for ℝ n , which largely extends the classical Beurling’s theorem. We then define its analog for compact extensions of ℝ n and also for Heisenberg groups.
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2020, Vol.107 (1-2), p.42-53 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any real numbers
p,q
≥ 1, we present in this paper a (
p, q
)-generalized version of Beurling’s uncertainty principle for ℝ
n
, which largely extends the classical Beurling’s theorem. We then define its analog for compact extensions of ℝ
n
and also for Heisenberg groups. |
---|---|
ISSN: | 0001-4346 1067-9073 1573-8876 |
DOI: | 10.1134/S0001434620010058 |