Development of the residual sodium quantification method for a fuel pin bundle of SFRs before and after dry cleaning
In a fuel handling system of sodium-cooled fast reactors (SFRs), it is necessary to remove the sodium remaining on spent fuel assemblies (FAs) before storing them in a spent fuel water pool (SFP). A next-generation SFR in Japan has adopted an advanced dry-cleaning system that consists of argon gas b...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear science and technology 2020-04, Vol.57 (4), p.408-420 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a fuel handling system of sodium-cooled fast reactors (SFRs), it is necessary to remove the sodium remaining on spent fuel assemblies (FAs) before storing them in a spent fuel water pool (SFP). A next-generation SFR in Japan has adopted an advanced dry-cleaning system that consists of argon gas blowing to remove the metallic residual sodium on the FA, which increases economic competitiveness and reduces waste products thanks to a waterless process. In this R&D work, the performance of the dry cleaning process has been investigated.
This paper describes experimental and analytical studies focusing on the amount of residual sodium remaining on a fuel pin bundle before and after the argon gas blowing process. The experiments were conducted using a sodium test loop and a short (approximately 1 m) specimen consisting of a 7-pin bundle. The effects of the blowing gas velocity and the blowing time were quantitatively analyzed in the experiments. The blowing gas velocity was varied from 3.9 to 31.3 m/s, and 113 data-points of the residual sodium were collected during the experiment. On the basis of these experimental results, the residual sodium quantification method for the fuel pin bundle was constructed. |
---|---|
ISSN: | 0022-3131 1881-1248 |
DOI: | 10.1080/00223131.2019.1691069 |