Assembly of cerium-based coordination polymer into variant polycrystalline 2D–3D CeO2−x nanostructures

Precise control over the morphology of nanomaterials is critical yet challenging. The present work reports an efficient approach to tailor the architecture of nanostructures. The process involves rapid disassembly/reassembly of an unstable metal-based coordination polymer (MCP) by controlling the ki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-03, Vol.8 (9), p.4753-4763
Hauptverfasser: Mofarah, Sajjad S, Adabifiroozjaei, Esmaeil, Wang, Yuan, Arandiyan, Hamidreza, Pardehkhorram, Raheleh, Yao, Yin, Assadi, M Hussein N, Mehmood, Rashid, Wen-Fan, Chen, Tsounis, Constantine, Scott, Jason, Lim, Sean, Webster, Richard, Zhong, Vicki, Xu, Yuwen, Koshy, Pramod, Sorrell, Charles C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precise control over the morphology of nanomaterials is critical yet challenging. The present work reports an efficient approach to tailor the architecture of nanostructures. The process involves rapid disassembly/reassembly of an unstable metal-based coordination polymer (MCP) by controlling the kinetics of the reassembly process. The synthesis procedure delivers unprecedented polycrystalline nanostructures, e.g., holey 2D CeO2−x nanosheets, with precisely tailored thicknesses in the range of 10–100 nm, and hollow 3D pseudo-octahedra and spheres. The consequent high surface areas and pore volumes, short diffusion distances, and high defect densities of the holey 2D CeO2−x indicate significant densities of active sites. This holey architecture exhibits rapid CO conversion and outstanding solar light photocatalytic performance. This approach of directed assembly offers a template-free, controllable, and cost-effective approach to achieve engineered CeO2−x architectures, which are nearly impossible through existing approaches.
ISSN:2050-7488
2050-7496
DOI:10.1039/c9ta11961b