Defective 2D Covalent Organic Frameworks for Postfunctionalization

Defects are deliberately introduced into covalent organic frameworks (COFs) via a three‐component condensation strategy. The defective COFs (dCOF‐NH2‐Xs, X = 20, 40, and 60) possess favorable crystallinity and porosity, as well as have active amine functional groups as anchoring sites for further po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-03, Vol.30 (10), p.n/a
Hauptverfasser: Li, Zhen, Liu, Zhi‐Wei, Li, Zeyu, Wang, Tian‐Xiong, Zhao, Fulai, Ding, Xuesong, Feng, Wei, Han, Bao‐Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Defects are deliberately introduced into covalent organic frameworks (COFs) via a three‐component condensation strategy. The defective COFs (dCOF‐NH2‐Xs, X = 20, 40, and 60) possess favorable crystallinity and porosity, as well as have active amine functional groups as anchoring sites for further postfunctionalization. By introducing imidazolium functional groups onto the pore walls of COFs via the Schiff‐base reaction, dCOF‐ImBr‐Xs‐ and dCOF‐ImTFSI‐Xs‐based materials are employed as all‐solid‐state electrolytes for lithium‐ion conduction with a wide range of working temperatures (from 303 to 423 K), and the ion conductivity of dCOF‐ImTFSI‐60‐based electrolyte reaches 7.05 × 10−3 S cm−1 at 423 K. As far as it is known, it is the highest value for all polymeric crystalline porous material based all‐solid‐state electrolytes. Furthermore, Li/dCOF‐ImTFSI‐60@Li/LiFePO4 all‐solid Li‐ion battery displays satisfactory battery performance under 353 K. This work not only provides a new methodology to construct COFs with precisely controlled defects for postfunctionalization, but also makes them promising candidate materials as all‐solid‐state electrolytes for lithium‐ion batteries operate at high temperatures. Defective COFs (dCOFs) with active amine functional groups as anchoring sites for postfunctionalization are constructed. After the postfunctionalization process, dCOF‐ImBr‐Xs‐ and dCOF‐ImTFSI‐Xs‐based materials are employed as all‐solid‐state electrolytes for lithium‐ion conduction. As a result, the dCOF‐ImTFSI‐60@Li‐based electrolyte exhibits outstanding lithium‐ion conductivity values, and the Li/dCOF‐ImTFSI‐60@Li/LiFePO4 all‐solid Li‐ion battery displays satisfactory battery performance under 353 K.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201909267