Doubly commuting invariant subspaces for representations of product systems of \(C^\)-correspondences
We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commut...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Trivedi, Harsh Shankar Veerabathiran |
description | We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commuting induced representations is explored, and a version of Mandrekar's Beurling type theorem is obtained to study doubly commuting invariant subspaces using Fock space approach due to Popescu. |
doi_str_mv | 10.48550/arxiv.1903.07867 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2369681430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369681430</sourcerecordid><originalsourceid>FETCH-proquest_journals_23696814303</originalsourceid><addsrcrecordid>eNqNjM2KwjAURsOAoIw-gLuAG120kyb9c-0oPoDLMhLrrURsbic3kfHtJ4gP4OqD8x0OY_NMpHldFOJLuz9zT7O1UKmo6rL6YBOpVJbUuZRjNiO6CiFkWcmiUBMG3xhOtwdvse-DN_bCjb1rZ7T1nMKJBt0C8Q4ddzA4ILBee4OWOHZ8cHgObRQf5KF_oma5-WlWSYsuygPaM9gYmLJRp28Es9d-ssVue9jsk1j4DUD-eMXgbLyOUpXrss5yJdR71j_vok4l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369681430</pqid></control><display><type>article</type><title>Doubly commuting invariant subspaces for representations of product systems of \(C^\)-correspondences</title><source>Free E- Journals</source><creator>Trivedi, Harsh ; Shankar Veerabathiran</creator><creatorcontrib>Trivedi, Harsh ; Shankar Veerabathiran</creatorcontrib><description>We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commuting induced representations is explored, and a version of Mandrekar's Beurling type theorem is obtained to study doubly commuting invariant subspaces using Fock space approach due to Popescu.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1903.07867</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Commuting ; Decomposition ; Representations ; Subspaces</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27904</link.rule.ids></links><search><creatorcontrib>Trivedi, Harsh</creatorcontrib><creatorcontrib>Shankar Veerabathiran</creatorcontrib><title>Doubly commuting invariant subspaces for representations of product systems of \(C^\)-correspondences</title><title>arXiv.org</title><description>We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commuting induced representations is explored, and a version of Mandrekar's Beurling type theorem is obtained to study doubly commuting invariant subspaces using Fock space approach due to Popescu.</description><subject>Commuting</subject><subject>Decomposition</subject><subject>Representations</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjM2KwjAURsOAoIw-gLuAG120kyb9c-0oPoDLMhLrrURsbic3kfHtJ4gP4OqD8x0OY_NMpHldFOJLuz9zT7O1UKmo6rL6YBOpVJbUuZRjNiO6CiFkWcmiUBMG3xhOtwdvse-DN_bCjb1rZ7T1nMKJBt0C8Q4ddzA4ILBee4OWOHZ8cHgObRQf5KF_oma5-WlWSYsuygPaM9gYmLJRp28Es9d-ssVue9jsk1j4DUD-eMXgbLyOUpXrss5yJdR71j_vok4l</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Trivedi, Harsh</creator><creator>Shankar Veerabathiran</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201106</creationdate><title>Doubly commuting invariant subspaces for representations of product systems of \(C^\)-correspondences</title><author>Trivedi, Harsh ; Shankar Veerabathiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23696814303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Commuting</topic><topic>Decomposition</topic><topic>Representations</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Trivedi, Harsh</creatorcontrib><creatorcontrib>Shankar Veerabathiran</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trivedi, Harsh</au><au>Shankar Veerabathiran</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Doubly commuting invariant subspaces for representations of product systems of \(C^\)-correspondences</atitle><jtitle>arXiv.org</jtitle><date>2020-11-06</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commuting induced representations is explored, and a version of Mandrekar's Beurling type theorem is obtained to study doubly commuting invariant subspaces using Fock space approach due to Popescu.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1903.07867</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2369681430 |
source | Free E- Journals |
subjects | Commuting Decomposition Representations Subspaces |
title | Doubly commuting invariant subspaces for representations of product systems of \(C^\)-correspondences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Doubly%20commuting%20invariant%20subspaces%20for%20representations%20of%20product%20systems%20of%20%5C(C%5E%5C)-correspondences&rft.jtitle=arXiv.org&rft.au=Trivedi,%20Harsh&rft.date=2020-11-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1903.07867&rft_dat=%3Cproquest%3E2369681430%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369681430&rft_id=info:pmid/&rfr_iscdi=true |