Doubly commuting invariant subspaces for representations of product systems of \(C^\)-correspondences

We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Trivedi, Harsh, Shankar Veerabathiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commuting induced representations is explored, and a version of Mandrekar's Beurling type theorem is obtained to study doubly commuting invariant subspaces using Fock space approach due to Popescu.
ISSN:2331-8422
DOI:10.48550/arxiv.1903.07867