Doubly commuting invariant subspaces for representations of product systems of \(C^\)-correspondences
We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commut...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a Shimorin-Wold-type decomposition for a doubly commuting covariant representation of a product system of \(C^*\)-correspondences. This extends a recent Wold-type decomposition by Jeu and Pinto for a \(q\)-doubly commuting isometries. Application to the wandering subspaces of doubly commuting induced representations is explored, and a version of Mandrekar's Beurling type theorem is obtained to study doubly commuting invariant subspaces using Fock space approach due to Popescu. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1903.07867 |