Effect of naloxone on aluminum-induced learning and memory impairment in rats

BACKGROUND: Uptake of aluminum may disturb the learning and memory of humans or animals. Naloxone (NAL) has been shown to exert beneficial effects on memory deficits. AIMS: We investigated the effects of naloxone on aluminum-induced learning and memory impairment in rats. SETTINGS AND DESIGN: Alumin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurology India 2005, Vol.53 (1), p.79
Hauptverfasser: Shi-Lei, Sun, Guang-Yu, M A, Bachelor, Li Hua, Bachelor, Zhu Yun, Dong, Hong-mei, Xu, Xiao-hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Uptake of aluminum may disturb the learning and memory of humans or animals. Naloxone (NAL) has been shown to exert beneficial effects on memory deficits. AIMS: We investigated the effects of naloxone on aluminum-induced learning and memory impairment in rats. SETTINGS AND DESIGN: Aluminum-induced learning and memory impairment model was established by gavage of Aluminum chloride (600 mg/kg) for 3 months. Rats were divided into three groups viz. naloxone-treated rats (NAL 0.8 mg/kg, i.p. daily for 7 days), non-treated model rats and normal controls. MATERIALS AND METHODS: The Morris water maze test was performed to study spatial learning and memory. Long-term potentiation (LTP) of the Schaffer collateral-CA1 synapse was recorded. Aluminum and zinc contents in the hippocampus were assayed with atomic absorption spectrophotometry. STATISTICAL ANALYSIS: Parameters of the hidden and visible platform trials and data of LTP were analyzed using two-way repeated measures ANOVA. RESULTS: In the hidden platform trials, escape latencies of the NAL rats were significantly shorter than that of the non-treated rats (P=0.000, 95% confidential interval low bound 14.31, upper bound 22.68). In probe trails, the number of entries in the target area of the NAL rats (6.75±1.28 times/min) was more than that of non-treated model rats (4.56±2.16 times/min, P=0.004, 95% confidence interval low bound -3.65, upper bound -0.788). The magnitudes of LTP recorded in the CA1 pyramidal neurons of the NAL-treated rats were significantly augmented when compared to the non-treated model rats (P=0.005, 95% confidence interval low bound 0.16, upper bound 0.84). CONCLUSIONS: NAL could facilitate spatial learning and memory and enhance LTP in the CA1 region of the hippocampus in aluminum-induced learning and memory impairment in rats.
ISSN:0028-3886
1998-4022
DOI:10.4103/0028-3886.15066