UKARA 1.0 Challenge Track 1: Automatic Short-Answer Scoring in Bahasa Indonesia
We describe our third-place solution to the UKARA 1.0 challenge on automated essay scoring. The task consists of a binary classification problem on two datasets | answers from two different questions. We ended up using two different models for the two datasets. For task A, we applied a random forest...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe our third-place solution to the UKARA 1.0 challenge on automated essay scoring. The task consists of a binary classification problem on two datasets | answers from two different questions. We ended up using two different models for the two datasets. For task A, we applied a random forest algorithm on features extracted using unigram with latent semantic analysis (LSA). On the other hand, for task B, we only used logistic regression on TF-IDF features. Our model results in F1 score of 0.812. |
---|---|
ISSN: | 2331-8422 |