Prolonged Endoplasmic Reticulum Stress Induces Apoptotic Cell Death in an Experimental Model of Chronic Cyclosporine Nephropathy

Background/Aims: Apoptosis contributes to cyclosporine (CsA)-induced renal cell death. This study tested the effects of CsA-induced endoplasmic reticulum (ER) stress on apoptotic cell death in an experimental model of chronic CsA nephropathy. Methods: CsA (15 mg/kg per day) was given to rats for 7 o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of nephrology 2008-01, Vol.28 (5), p.707-714
Hauptverfasser: Han, Sang Woo, Li, Can, Ahn, Kyung Ohk, Lim, Sun Woo, Song, Hyun Guk, Jang, Yoon Sung, Cho, Yoon Mi, Jang, Young Min, Ghee, Jung Yeon, Kim, Jin Young, Kim, Su Hyun, Kim, Jin, Kwon, Oh Joo, Yang, Chul Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background/Aims: Apoptosis contributes to cyclosporine (CsA)-induced renal cell death. This study tested the effects of CsA-induced endoplasmic reticulum (ER) stress on apoptotic cell death in an experimental model of chronic CsA nephropathy. Methods: CsA (15 mg/kg per day) was given to rats for 7 or 28 days. The ER stress response was evaluated with BiP expression, and the proapoptotic response was assessed with CHOP and caspase 12 expression. ER structure was evaluated by transmission electron microscopy, and apoptotic cell death was detected with TUNEL staining. Results: Short-term treatment of CsA for 7 days activated both the ER stress response (induction of BiP mRNA and protein) and the proapoptotic response (upregulation of caspase 12 and CHOP mRNAs and proteins). However, long-term treatment with CsA for 28 days decreased BiP and further increased CHOP. The imbalance between the two responses coincided with the timing of the appearance of apoptotic cell death and the disruption of the ER structure. Conclusion: Prolonged CsA-induced ER stress causes apoptotic cell death by depleting molecular chaperones and activating the proapoptotic pathway.
ISSN:0250-8095
1421-9670
DOI:10.1159/000127432