Network Pharmacology Study on the Pharmacological Mechanism of Cinobufotalin Injection against Lung Cancer

Cinobufotalin injection, extracted from the skin of Chinese giant salamander or black sable, has good clinical effect against lung cancer. However, owing to its complex composition, the pharmacological mechanism of cinobufotalin injection has not been fully clarified. This study aimed to explore the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evidence-based complementary and alternative medicine 2020, Vol.2020 (2020), p.1-13, Article 1246742
Hauptverfasser: Li, Linlu, Lu, Dianrong, Xue, Peng, Peng, Xi, Mao, Yun, Zhu, Shijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cinobufotalin injection, extracted from the skin of Chinese giant salamander or black sable, has good clinical effect against lung cancer. However, owing to its complex composition, the pharmacological mechanism of cinobufotalin injection has not been fully clarified. This study aimed to explore the mechanism of action of cinobufotalin injection against lung cancer using network pharmacology and bioinformatics. Compounds of cinobufotalin injection were determined by literature retrieval, and potential therapeutic targets of cinobufotalin injection were screened from Swiss Target Prediction and STITCH databases. Lung-cancer-related genes were summarized from GeneCards, OMIM, and DrugBank databases. The pharmacological mechanism of cinobufotalin injection against lung cancer was determined by enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network was constructed. We identified 23 compounds and 506 potential therapeutic targets of cinobufotalin injection, as well as 70 genes as potential therapeutic targets of cinobufotalin injection in lung cancer by molecular docking. The antilung cancer effect of cinobufotalin injection was shown to involve cell cycle, cell proliferation, antiangiogenesis effect, and immune inflammation pathways, such as PI3K-Akt, VEGF, and the Toll-like receptor signaling pathway. In network analysis, the hub targets of cinobufotalin injection against lung cancer were identified as VEGFA, EGFR, CCND1, CASP3, and AKT1. A network diagram of “drug-compounds-target-pathway” was constructed through network pharmacology to elucidate the pharmacological mechanism of the antilung cancer effect of cinobufotalin injection, which is conducive to guiding clinical medication.
ISSN:1741-427X
1741-4288
DOI:10.1155/2020/1246742