SINGULAR RIEMANNIAN FOLIATIONS AND THEIR QUADRATIC BASIC POLYNOMIALS
We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyl's First Fundamental Theorems, provides a characterization of the recently discovered Clifford foliations in terms of basic...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2020-03, Vol.25 (1), p.251-277 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyl's First Fundamental Theorems, provides a characterization of the recently discovered Clifford foliations in terms of basic polynomials. This link also yields new structural results about infinitesimal foliations, such as the existence of non-trivial symmetries. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-019-09516-9 |