SINGULAR RIEMANNIAN FOLIATIONS AND THEIR QUADRATIC BASIC POLYNOMIALS

We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyl's First Fundamental Theorems, provides a characterization of the recently discovered Clifford foliations in terms of basic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2020-03, Vol.25 (1), p.251-277
Hauptverfasser: MENDES, R. A. E., RADESCHI, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyl's First Fundamental Theorems, provides a characterization of the recently discovered Clifford foliations in terms of basic polynomials. This link also yields new structural results about infinitesimal foliations, such as the existence of non-trivial symmetries.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-019-09516-9