Operational Method for Solving Fractional Differential Equations with the Left-and Right-Hand Sided Erdélyi-Kober Fractional Derivatives

In this paper, we first provide a survey of some basic properties of the left-and right-hand sided Erdélyi-Kober fractional integrals and derivatives and introduce their compositions in form of the composed Erdélyi-Kober operators. Then we derive a convolutional representation for the composed Erdél...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2020-02, Vol.23 (1), p.103-125
Hauptverfasser: Hanna, Latif A. M., Al-Kandari, Maryam, Luchko, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we first provide a survey of some basic properties of the left-and right-hand sided Erdélyi-Kober fractional integrals and derivatives and introduce their compositions in form of the composed Erdélyi-Kober operators. Then we derive a convolutional representation for the composed Erdélyi-Kober fractional integral in terms of its convolution in the Dimovski sense. For this convolution, we also determine the divisors of zero. These both results are then used for construction of an operational method for solving an initial value problem for a fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives defined on the positive semi-axis. Its solution is obtained in terms of the four-parameters Wright function of the second kind. The same operational method can be employed for other fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives.
ISSN:1311-0454
1314-2224
DOI:10.1515/fca-2020-0004