Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices
Latticing has become a common design practice in additive manufacturing (AM) and represents a key lightweighting strategy to date. Functional graded lattices (FGLs) have recently gained immense traction in the AM community, offering a unique way of tailoring the structural performance. This paper co...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2020-03, Vol.72 (3), p.1292-1298 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1298 |
---|---|
container_issue | 3 |
container_start_page | 1292 |
container_title | JOM (1989) |
container_volume | 72 |
creator | Plocher, János Panesar, Ajit |
description | Latticing has become a common design practice in additive manufacturing (AM) and represents a key lightweighting strategy to date. Functional graded lattices (FGLs) have recently gained immense traction in the AM community, offering a unique way of tailoring the structural performance. This paper constitutes the first ever investigation on the combination of graded strut- and surface-based lattices with fiber-reinforced AM to further increase the performance-to-weight ratio. The energy absorption behavior of cubic lattice specimens composed of body-centered cubic and Schwarz-P unit cells with different severities of grading but the same mass, considered for uniaxial compression testing and printed by fused deposition modelling of short fiber-reinforced nylon, were investigated. The results elucidate that grading affects the energy absorption capability and deformation behavior of these lattice types differently. These findings can provide engineers with valuable insight into the properties of FGLs, aiding targeted rather than expertise-driven utilization of lattices in design for AM. |
doi_str_mv | 10.1007/s11837-019-03961-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2366662762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2366662762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5053a5f0ed0af62b4fbbfd53b5a4d916d1a60c55b635e5720b8f3e8b257bbff63</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeCz9GkadL2cQw3hQ5F9Dnkz41mdO1MWmHf3swKvnlf7uXwO4fLQeiakltKSHkXKa1YiQmtMWG1oJidoBnlBcO04vQ03aQocVGx6hxdxLglyVTUdIbkBsyH6rxRbfYMwfVhpzoDWe-yhbV-8F_QHrKN6kanzDAGsNnKawj4BXyXaHMUxs4Mvu9Um9B1UDZpjRoGbyBeojOn2ghXv3uO3lb3r8sH3DytH5eLBhsm2IA54UxxR8AS5USuC6e1s5xprgpbU2GpEsRwrgXjwMuc6MoxqHTOywQ6weboZsrdh_5zhDjIbT-G9FKUORNp8lLkiconyoQ-xgBO7oPfqXCQlMhjkXIqUqYi5U-RkiUTm0wxwd07hL_of1zf1yl3cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366662762</pqid></control><display><type>article</type><title>Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices</title><source>Springer Nature - Complete Springer Journals</source><creator>Plocher, János ; Panesar, Ajit</creator><creatorcontrib>Plocher, János ; Panesar, Ajit</creatorcontrib><description>Latticing has become a common design practice in additive manufacturing (AM) and represents a key lightweighting strategy to date. Functional graded lattices (FGLs) have recently gained immense traction in the AM community, offering a unique way of tailoring the structural performance. This paper constitutes the first ever investigation on the combination of graded strut- and surface-based lattices with fiber-reinforced AM to further increase the performance-to-weight ratio. The energy absorption behavior of cubic lattice specimens composed of body-centered cubic and Schwarz-P unit cells with different severities of grading but the same mass, considered for uniaxial compression testing and printed by fused deposition modelling of short fiber-reinforced nylon, were investigated. The results elucidate that grading affects the energy absorption capability and deformation behavior of these lattice types differently. These findings can provide engineers with valuable insight into the properties of FGLs, aiding targeted rather than expertise-driven utilization of lattices in design for AM.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-019-03961-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Body centered cubic lattice ; Chemistry/Food Science ; Compression tests ; Deformation ; Design ; Earth Sciences ; Energy ; Energy absorption ; Engineering ; Engineers ; Environment ; Fiber reinforced polymers ; Fused deposition modeling ; Investigations ; Load ; Mechanical properties ; Physics ; Short fibers ; Solid Freeform Fabrication 2019</subject><ispartof>JOM (1989), 2020-03, Vol.72 (3), p.1292-1298</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5053a5f0ed0af62b4fbbfd53b5a4d916d1a60c55b635e5720b8f3e8b257bbff63</citedby><cites>FETCH-LOGICAL-c363t-5053a5f0ed0af62b4fbbfd53b5a4d916d1a60c55b635e5720b8f3e8b257bbff63</cites><orcidid>0000-0003-2731-3720 ; 0000-0001-8801-8288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-019-03961-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-019-03961-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Plocher, János</creatorcontrib><creatorcontrib>Panesar, Ajit</creatorcontrib><title>Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Latticing has become a common design practice in additive manufacturing (AM) and represents a key lightweighting strategy to date. Functional graded lattices (FGLs) have recently gained immense traction in the AM community, offering a unique way of tailoring the structural performance. This paper constitutes the first ever investigation on the combination of graded strut- and surface-based lattices with fiber-reinforced AM to further increase the performance-to-weight ratio. The energy absorption behavior of cubic lattice specimens composed of body-centered cubic and Schwarz-P unit cells with different severities of grading but the same mass, considered for uniaxial compression testing and printed by fused deposition modelling of short fiber-reinforced nylon, were investigated. The results elucidate that grading affects the energy absorption capability and deformation behavior of these lattice types differently. These findings can provide engineers with valuable insight into the properties of FGLs, aiding targeted rather than expertise-driven utilization of lattices in design for AM.</description><subject>Additive manufacturing</subject><subject>Body centered cubic lattice</subject><subject>Chemistry/Food Science</subject><subject>Compression tests</subject><subject>Deformation</subject><subject>Design</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Engineering</subject><subject>Engineers</subject><subject>Environment</subject><subject>Fiber reinforced polymers</subject><subject>Fused deposition modeling</subject><subject>Investigations</subject><subject>Load</subject><subject>Mechanical properties</subject><subject>Physics</subject><subject>Short fibers</subject><subject>Solid Freeform Fabrication 2019</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF9LwzAUxYMoOKdfwKeCz9GkadL2cQw3hQ5F9Dnkz41mdO1MWmHf3swKvnlf7uXwO4fLQeiakltKSHkXKa1YiQmtMWG1oJidoBnlBcO04vQ03aQocVGx6hxdxLglyVTUdIbkBsyH6rxRbfYMwfVhpzoDWe-yhbV-8F_QHrKN6kanzDAGsNnKawj4BXyXaHMUxs4Mvu9Um9B1UDZpjRoGbyBeojOn2ghXv3uO3lb3r8sH3DytH5eLBhsm2IA54UxxR8AS5USuC6e1s5xprgpbU2GpEsRwrgXjwMuc6MoxqHTOywQ6weboZsrdh_5zhDjIbT-G9FKUORNp8lLkiconyoQ-xgBO7oPfqXCQlMhjkXIqUqYi5U-RkiUTm0wxwd07hL_of1zf1yl3cA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Plocher, János</creator><creator>Panesar, Ajit</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-2731-3720</orcidid><orcidid>https://orcid.org/0000-0001-8801-8288</orcidid></search><sort><creationdate>20200301</creationdate><title>Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices</title><author>Plocher, János ; Panesar, Ajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5053a5f0ed0af62b4fbbfd53b5a4d916d1a60c55b635e5720b8f3e8b257bbff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Body centered cubic lattice</topic><topic>Chemistry/Food Science</topic><topic>Compression tests</topic><topic>Deformation</topic><topic>Design</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Engineering</topic><topic>Engineers</topic><topic>Environment</topic><topic>Fiber reinforced polymers</topic><topic>Fused deposition modeling</topic><topic>Investigations</topic><topic>Load</topic><topic>Mechanical properties</topic><topic>Physics</topic><topic>Short fibers</topic><topic>Solid Freeform Fabrication 2019</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plocher, János</creatorcontrib><creatorcontrib>Panesar, Ajit</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plocher, János</au><au>Panesar, Ajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>72</volume><issue>3</issue><spage>1292</spage><epage>1298</epage><pages>1292-1298</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Latticing has become a common design practice in additive manufacturing (AM) and represents a key lightweighting strategy to date. Functional graded lattices (FGLs) have recently gained immense traction in the AM community, offering a unique way of tailoring the structural performance. This paper constitutes the first ever investigation on the combination of graded strut- and surface-based lattices with fiber-reinforced AM to further increase the performance-to-weight ratio. The energy absorption behavior of cubic lattice specimens composed of body-centered cubic and Schwarz-P unit cells with different severities of grading but the same mass, considered for uniaxial compression testing and printed by fused deposition modelling of short fiber-reinforced nylon, were investigated. The results elucidate that grading affects the energy absorption capability and deformation behavior of these lattice types differently. These findings can provide engineers with valuable insight into the properties of FGLs, aiding targeted rather than expertise-driven utilization of lattices in design for AM.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-019-03961-3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2731-3720</orcidid><orcidid>https://orcid.org/0000-0001-8801-8288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2020-03, Vol.72 (3), p.1292-1298 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2366662762 |
source | Springer Nature - Complete Springer Journals |
subjects | Additive manufacturing Body centered cubic lattice Chemistry/Food Science Compression tests Deformation Design Earth Sciences Energy Energy absorption Engineering Engineers Environment Fiber reinforced polymers Fused deposition modeling Investigations Load Mechanical properties Physics Short fibers Solid Freeform Fabrication 2019 |
title | Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Performance%20of%20Additively%20Manufactured%20Fiber-Reinforced%20Functionally%20Graded%20Lattices&rft.jtitle=JOM%20(1989)&rft.au=Plocher,%20J%C3%A1nos&rft.date=2020-03-01&rft.volume=72&rft.issue=3&rft.spage=1292&rft.epage=1298&rft.pages=1292-1298&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-019-03961-3&rft_dat=%3Cproquest_cross%3E2366662762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366662762&rft_id=info:pmid/&rfr_iscdi=true |