Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices

Latticing has become a common design practice in additive manufacturing (AM) and represents a key lightweighting strategy to date. Functional graded lattices (FGLs) have recently gained immense traction in the AM community, offering a unique way of tailoring the structural performance. This paper co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2020-03, Vol.72 (3), p.1292-1298
Hauptverfasser: Plocher, János, Panesar, Ajit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Latticing has become a common design practice in additive manufacturing (AM) and represents a key lightweighting strategy to date. Functional graded lattices (FGLs) have recently gained immense traction in the AM community, offering a unique way of tailoring the structural performance. This paper constitutes the first ever investigation on the combination of graded strut- and surface-based lattices with fiber-reinforced AM to further increase the performance-to-weight ratio. The energy absorption behavior of cubic lattice specimens composed of body-centered cubic and Schwarz-P unit cells with different severities of grading but the same mass, considered for uniaxial compression testing and printed by fused deposition modelling of short fiber-reinforced nylon, were investigated. The results elucidate that grading affects the energy absorption capability and deformation behavior of these lattice types differently. These findings can provide engineers with valuable insight into the properties of FGLs, aiding targeted rather than expertise-driven utilization of lattices in design for AM.
ISSN:1047-4838
1543-1851
DOI:10.1007/s11837-019-03961-3