On the Number of Nodal Domains of Random Spherical Harmonics
Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny an...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2009-10, Vol.131 (5), p.1337-1357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1357 |
---|---|
container_issue | 5 |
container_start_page | 1337 |
container_title | American journal of mathematics |
container_volume | 131 |
creator | Nazarov, Fedor Sodin, Mikhail |
description | Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves. |
doi_str_mv | 10.1353/ajm.0.0070 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236627495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40388552</jstor_id><sourcerecordid>40388552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-2df0eb0a990a9794746b35a31564668e9765efb78966958de7637039ee0d49ae3</originalsourceid><addsrcrecordid>eNpFUM1LwzAUD6LgnF68C0XwInS-JE3SgBeZHxPGBk7PIW1T1mKambQH_3tTNubhEd7L7-O9H0LXGGaYMvqgWzuDGYCAEzTBkEPKqRCnaAIAJJWUiHN0EUIb24ghE_S47pJ-a5LVYAvjE1cnK1fp7-TZWd10YRx86K5yNtnstsY3ZfxbaG9d15ThEp3V-juYq8M7RV-vL5_zRbpcv73Pn5ZpSSXuU1LVYArQUsYSMhMZLyjTFDOecZ4bKTgzdSFyyblkeWVEXBqoNAaqTGpDp-h2r7vz7mcwoVetG3wXLRWhnBORSRZB93tQ6V0I3tRq5xur_a_CoMZwVAxHgRoPj-C7g6IO8aTa665swpFBcNw1lyLisqNza8reDsH8m1MsKGVqMwY95gySxVwZj7SbPa0NvfNH2QxonjNG6B8GbHsn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236627495</pqid></control><display><type>article</type><title>On the Number of Nodal Domains of Random Spherical Harmonics</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Nazarov, Fedor ; Sodin, Mikhail</creator><creatorcontrib>Nazarov, Fedor ; Sodin, Mikhail</creatorcontrib><description>Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.0.0070</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Covariance ; Exact sciences and technology ; General mathematics ; General, history and biography ; Harmonic analysis ; Hypersurfaces ; Inference from stochastic processes; time series analysis ; Mathematical analysis ; Mathematical constants ; Mathematical functions ; Mathematical problems ; Mathematics ; Modeling ; Numbers ; Polynomials ; Probability and statistics ; Probability theory and stochastic processes ; Radius of a sphere ; Random variables ; Sciences and techniques of general use ; Special functions ; Spheres ; Spherical harmonics ; Statistics ; Stochastic processes ; Theorems ; Zero</subject><ispartof>American journal of mathematics, 2009-10, Vol.131 (5), p.1337-1357</ispartof><rights>Copyright 2009 The Johns Hopkins University Press</rights><rights>Copyright © 2008 The Johns Hopkins University Press.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Oct 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-2df0eb0a990a9794746b35a31564668e9765efb78966958de7637039ee0d49ae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40388552$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40388552$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21990897$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nazarov, Fedor</creatorcontrib><creatorcontrib>Sodin, Mikhail</creatorcontrib><title>On the Number of Nodal Domains of Random Spherical Harmonics</title><title>American journal of mathematics</title><description>Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves.</description><subject>Covariance</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Harmonic analysis</subject><subject>Hypersurfaces</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical constants</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Numbers</subject><subject>Polynomials</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Radius of a sphere</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Spheres</subject><subject>Spherical harmonics</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Theorems</subject><subject>Zero</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFUM1LwzAUD6LgnF68C0XwInS-JE3SgBeZHxPGBk7PIW1T1mKambQH_3tTNubhEd7L7-O9H0LXGGaYMvqgWzuDGYCAEzTBkEPKqRCnaAIAJJWUiHN0EUIb24ghE_S47pJ-a5LVYAvjE1cnK1fp7-TZWd10YRx86K5yNtnstsY3ZfxbaG9d15ThEp3V-juYq8M7RV-vL5_zRbpcv73Pn5ZpSSXuU1LVYArQUsYSMhMZLyjTFDOecZ4bKTgzdSFyyblkeWVEXBqoNAaqTGpDp-h2r7vz7mcwoVetG3wXLRWhnBORSRZB93tQ6V0I3tRq5xur_a_CoMZwVAxHgRoPj-C7g6IO8aTa665swpFBcNw1lyLisqNza8reDsH8m1MsKGVqMwY95gySxVwZj7SbPa0NvfNH2QxonjNG6B8GbHsn</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Nazarov, Fedor</creator><creator>Sodin, Mikhail</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20091001</creationdate><title>On the Number of Nodal Domains of Random Spherical Harmonics</title><author>Nazarov, Fedor ; Sodin, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-2df0eb0a990a9794746b35a31564668e9765efb78966958de7637039ee0d49ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Covariance</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Harmonic analysis</topic><topic>Hypersurfaces</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical constants</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Numbers</topic><topic>Polynomials</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Radius of a sphere</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Spheres</topic><topic>Spherical harmonics</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Theorems</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarov, Fedor</creatorcontrib><creatorcontrib>Sodin, Mikhail</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarov, Fedor</au><au>Sodin, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Number of Nodal Domains of Random Spherical Harmonics</atitle><jtitle>American journal of mathematics</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>131</volume><issue>5</issue><spage>1337</spage><epage>1357</epage><pages>1337-1357</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.0.0070</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2009-10, Vol.131 (5), p.1337-1357 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_236627495 |
source | Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Covariance Exact sciences and technology General mathematics General, history and biography Harmonic analysis Hypersurfaces Inference from stochastic processes time series analysis Mathematical analysis Mathematical constants Mathematical functions Mathematical problems Mathematics Modeling Numbers Polynomials Probability and statistics Probability theory and stochastic processes Radius of a sphere Random variables Sciences and techniques of general use Special functions Spheres Spherical harmonics Statistics Stochastic processes Theorems Zero |
title | On the Number of Nodal Domains of Random Spherical Harmonics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Number%20of%20Nodal%20Domains%20of%20Random%20Spherical%20Harmonics&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Nazarov,%20Fedor&rft.date=2009-10-01&rft.volume=131&rft.issue=5&rft.spage=1337&rft.epage=1357&rft.pages=1337-1357&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.0.0070&rft_dat=%3Cjstor_proqu%3E40388552%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236627495&rft_id=info:pmid/&rft_jstor_id=40388552&rfr_iscdi=true |