On the Number of Nodal Domains of Random Spherical Harmonics

Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2009-10, Vol.131 (5), p.1337-1357
Hauptverfasser: Nazarov, Fedor, Sodin, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1357
container_issue 5
container_start_page 1337
container_title American journal of mathematics
container_volume 131
creator Nazarov, Fedor
Sodin, Mikhail
description Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves.
doi_str_mv 10.1353/ajm.0.0070
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236627495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40388552</jstor_id><sourcerecordid>40388552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-2df0eb0a990a9794746b35a31564668e9765efb78966958de7637039ee0d49ae3</originalsourceid><addsrcrecordid>eNpFUM1LwzAUD6LgnF68C0XwInS-JE3SgBeZHxPGBk7PIW1T1mKambQH_3tTNubhEd7L7-O9H0LXGGaYMvqgWzuDGYCAEzTBkEPKqRCnaAIAJJWUiHN0EUIb24ghE_S47pJ-a5LVYAvjE1cnK1fp7-TZWd10YRx86K5yNtnstsY3ZfxbaG9d15ThEp3V-juYq8M7RV-vL5_zRbpcv73Pn5ZpSSXuU1LVYArQUsYSMhMZLyjTFDOecZ4bKTgzdSFyyblkeWVEXBqoNAaqTGpDp-h2r7vz7mcwoVetG3wXLRWhnBORSRZB93tQ6V0I3tRq5xur_a_CoMZwVAxHgRoPj-C7g6IO8aTa665swpFBcNw1lyLisqNza8reDsH8m1MsKGVqMwY95gySxVwZj7SbPa0NvfNH2QxonjNG6B8GbHsn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236627495</pqid></control><display><type>article</type><title>On the Number of Nodal Domains of Random Spherical Harmonics</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Nazarov, Fedor ; Sodin, Mikhail</creator><creatorcontrib>Nazarov, Fedor ; Sodin, Mikhail</creatorcontrib><description>Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.0.0070</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Covariance ; Exact sciences and technology ; General mathematics ; General, history and biography ; Harmonic analysis ; Hypersurfaces ; Inference from stochastic processes; time series analysis ; Mathematical analysis ; Mathematical constants ; Mathematical functions ; Mathematical problems ; Mathematics ; Modeling ; Numbers ; Polynomials ; Probability and statistics ; Probability theory and stochastic processes ; Radius of a sphere ; Random variables ; Sciences and techniques of general use ; Special functions ; Spheres ; Spherical harmonics ; Statistics ; Stochastic processes ; Theorems ; Zero</subject><ispartof>American journal of mathematics, 2009-10, Vol.131 (5), p.1337-1357</ispartof><rights>Copyright 2009 The Johns Hopkins University Press</rights><rights>Copyright © 2008 The Johns Hopkins University Press.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Oct 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-2df0eb0a990a9794746b35a31564668e9765efb78966958de7637039ee0d49ae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40388552$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40388552$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21990897$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nazarov, Fedor</creatorcontrib><creatorcontrib>Sodin, Mikhail</creatorcontrib><title>On the Number of Nodal Domains of Random Spherical Harmonics</title><title>American journal of mathematics</title><description>Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves.</description><subject>Covariance</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Harmonic analysis</subject><subject>Hypersurfaces</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical constants</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Numbers</subject><subject>Polynomials</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Radius of a sphere</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Spheres</subject><subject>Spherical harmonics</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Theorems</subject><subject>Zero</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFUM1LwzAUD6LgnF68C0XwInS-JE3SgBeZHxPGBk7PIW1T1mKambQH_3tTNubhEd7L7-O9H0LXGGaYMvqgWzuDGYCAEzTBkEPKqRCnaAIAJJWUiHN0EUIb24ghE_S47pJ-a5LVYAvjE1cnK1fp7-TZWd10YRx86K5yNtnstsY3ZfxbaG9d15ThEp3V-juYq8M7RV-vL5_zRbpcv73Pn5ZpSSXuU1LVYArQUsYSMhMZLyjTFDOecZ4bKTgzdSFyyblkeWVEXBqoNAaqTGpDp-h2r7vz7mcwoVetG3wXLRWhnBORSRZB93tQ6V0I3tRq5xur_a_CoMZwVAxHgRoPj-C7g6IO8aTa665swpFBcNw1lyLisqNza8reDsH8m1MsKGVqMwY95gySxVwZj7SbPa0NvfNH2QxonjNG6B8GbHsn</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Nazarov, Fedor</creator><creator>Sodin, Mikhail</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20091001</creationdate><title>On the Number of Nodal Domains of Random Spherical Harmonics</title><author>Nazarov, Fedor ; Sodin, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-2df0eb0a990a9794746b35a31564668e9765efb78966958de7637039ee0d49ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Covariance</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Harmonic analysis</topic><topic>Hypersurfaces</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical constants</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Numbers</topic><topic>Polynomials</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Radius of a sphere</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Spheres</topic><topic>Spherical harmonics</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Theorems</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarov, Fedor</creatorcontrib><creatorcontrib>Sodin, Mikhail</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarov, Fedor</au><au>Sodin, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Number of Nodal Domains of Random Spherical Harmonics</atitle><jtitle>American journal of mathematics</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>131</volume><issue>5</issue><spage>1337</spage><epage>1357</epage><pages>1337-1357</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.0.0070</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2009-10, Vol.131 (5), p.1337-1357
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_236627495
source Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Covariance
Exact sciences and technology
General mathematics
General, history and biography
Harmonic analysis
Hypersurfaces
Inference from stochastic processes
time series analysis
Mathematical analysis
Mathematical constants
Mathematical functions
Mathematical problems
Mathematics
Modeling
Numbers
Polynomials
Probability and statistics
Probability theory and stochastic processes
Radius of a sphere
Random variables
Sciences and techniques of general use
Special functions
Spheres
Spherical harmonics
Statistics
Stochastic processes
Theorems
Zero
title On the Number of Nodal Domains of Random Spherical Harmonics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Number%20of%20Nodal%20Domains%20of%20Random%20Spherical%20Harmonics&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Nazarov,%20Fedor&rft.date=2009-10-01&rft.volume=131&rft.issue=5&rft.spage=1337&rft.epage=1357&rft.pages=1337-1357&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.0.0070&rft_dat=%3Cjstor_proqu%3E40388552%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236627495&rft_id=info:pmid/&rft_jstor_id=40388552&rfr_iscdi=true