On the Number of Nodal Domains of Random Spherical Harmonics

Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2009-10, Vol.131 (5), p.1337-1357
Hauptverfasser: Nazarov, Fedor, Sodin, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.0.0070