On the Number of Nodal Domains of Random Spherical Harmonics
Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny an...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2009-10, Vol.131 (5), p.1337-1357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let N(f) be a number of nodal domains of a random Gaussian spherical harmonic f of degree n. We prove that as n grows to infinity, the mean of N(f)/n² tends to a positive constant a, and that N(f)/n² exponentially concentrates around a. This result is consistent with predictions made by Bogomolny and Schmit using a percolation-like model for nodal domains of random Gaussian plane waves. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.0.0070 |